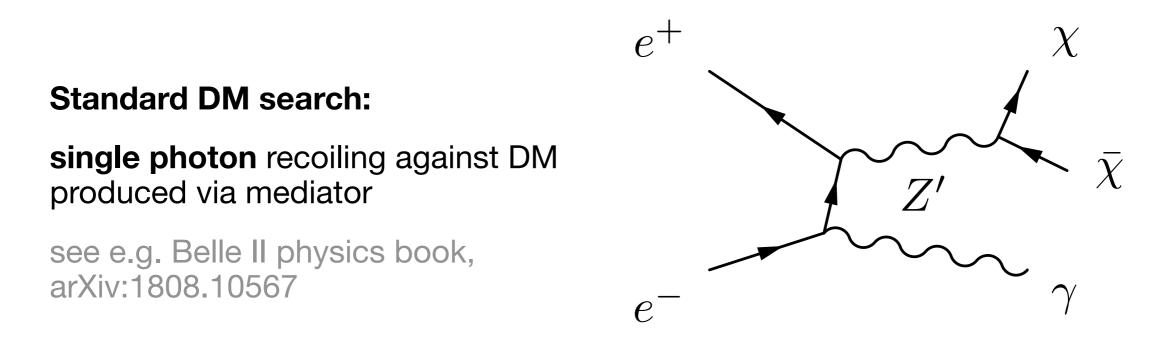
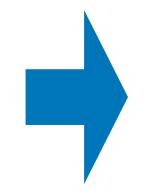
Forecasting dark showers at Belle II

Elias Bernreuther

Fermilab

Pheno 2022, May 9, 2022


based on arXiv:2203.08824


in collaboration with Kai Böse, Torben Ferber, Christopher Hearty, Felix Kahlhoefer, Alessandro Morandini and Kai Schmidt-Hoberg

Dark sector searches at the intensity frontier

- Light dark sectors at the sub-GeV scale are becoming increasingly attractive due to lack of WIMP observation.
- Among the most sensitive accelerator probes at the **intensity frontier:**

Belle II experiment at SuperKEKB e^+e^- collider with $\sqrt{s} = 10.58$ GeV

Highly constraining **if** the mediator can be produced directly ($m \leq 10 \text{ GeV}$) **If not**, less standard dark sector signatures can be more promising.

Particularly striking example: dark showers

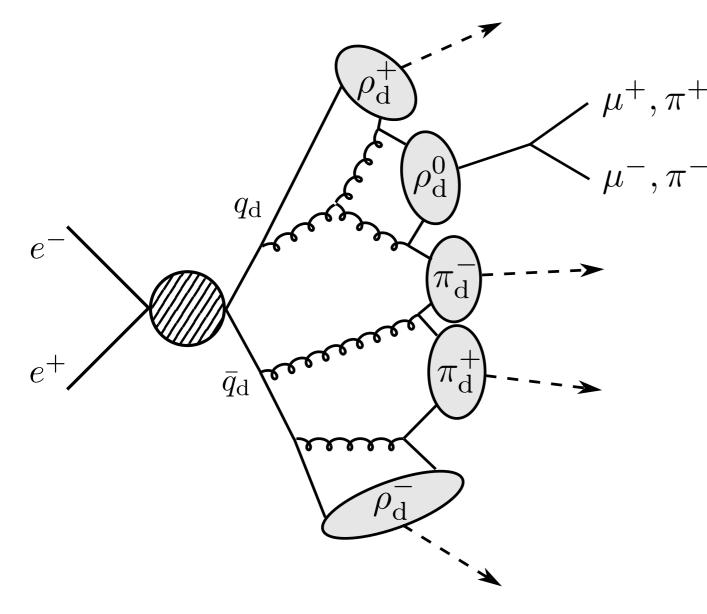
Strongly interacting dark sector with effective portal

• Dark showers occur in **strongly interacting dark sectors** resembling SM QCD sector:

$$\mathscr{L}_{\text{dark QCD}} \supset -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu,a} + \overline{q_d} i \mathscr{D} q_d - \overline{q_d} M_q q_d$$

• Below the dark confinement scale:

Dark pions π_d are excellent DM candidates. see e.g. Kribs & Neal arXiv:1604.04627 for review Dark vector mesons ρ_d are generically unstable and lead to visible signatures.


- Mediator with mass $\gg \sqrt{s}_{\rm Belle~II}$ can be described by an effective interaction between dark quarks and SM fermions:

$$\mathscr{L}_{\rm eff} \supset \frac{1}{\Lambda^2} \sum_f q_f \bar{f} \gamma^{\mu} f \bar{q}_{\rm d} \gamma_{\mu} q_{\rm d}$$

 Λ : scale of the effective interaction

Dark showers at Belle II

• If dark confinement scale $\ll \sqrt{s}$, production of dark quarks via effective interaction leads to **dark shower** and production of dark mesons

• Signature of light dark showers:

(multiple) displaced decays number varying from event to event

 Rate of dark shower production through effective operator scales as

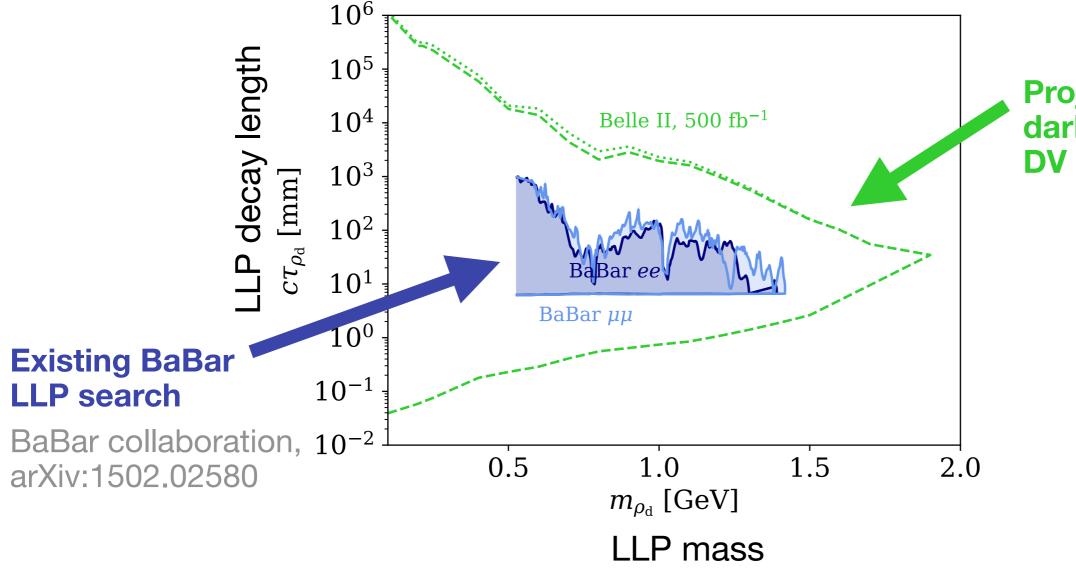
$$\sigma(e^+e^- \to q_{\rm d}\bar{q}_{\rm d}) \propto \frac{s}{\Lambda^4}$$

• The ρ_d^0 mesons decay to visible SM particles with decay length

$$c au_{
ho_{
m d}^0} \propto rac{\Lambda^4}{m_{
ho_{
m d}}^5}$$

Parameter space of low-energy effective theory only consists of Λ and $m_{\rho_{\rm d}}$.

Displaced vertex search at Belle II

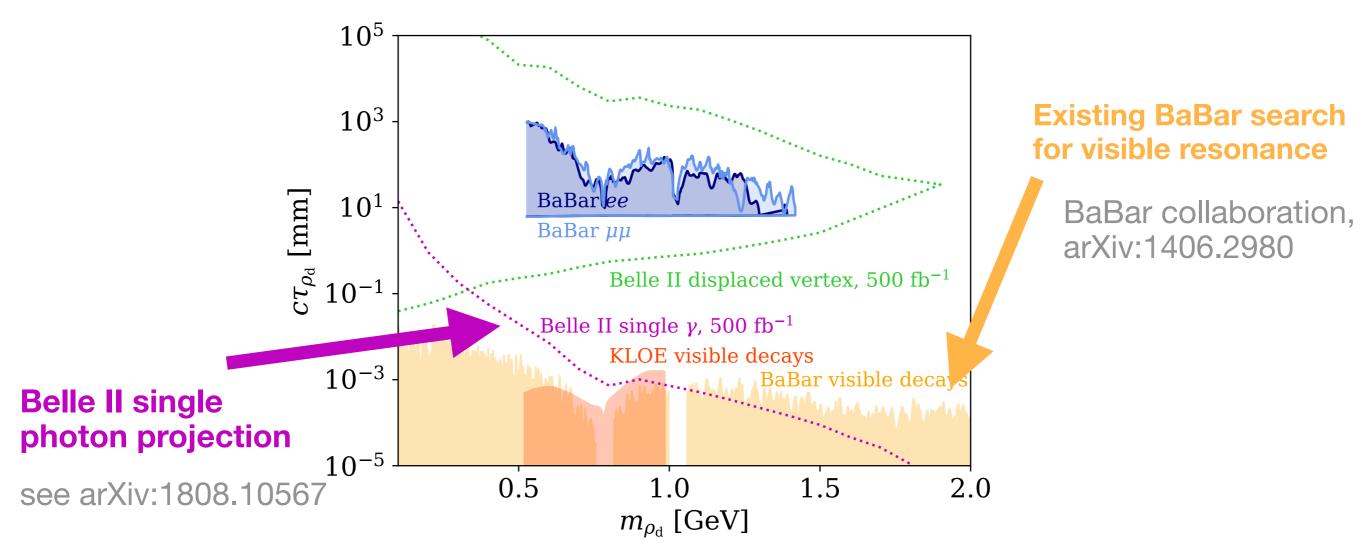

- No dedicated search for dark showers at B factories yet, but model-independent searches for LLPs
- **Signature:** displaced decays to pairs of oppositely charged tracks (leptons, pions, kaons)
- **Prospective search for displaced vertices at Belle II** Duerr et al., arXiv:1911.03176 and arXiv:2012.08595, and EB et al. arXiv:2203.08824

displaced decays at transverse distance 0.2 cm < R < 60 cmnegligible background expected even with only loose selection cuts

electron pairs	muon pairs
$\begin{array}{c} p(e^+), p(e^-) > 0.1 \ {\rm GeV} \\ m_{e^+e^-} > 0.03 \ {\rm GeV} \\ \alpha(e^+,e^-) > 0.025 \ {\rm rad} \end{array}$	$p(\mu^+), p(\mu^-) > 0.05 { m GeV}$ $m_{\mu^+\mu^-} < 0.48 { m GeV} or m_{\mu^+\mu^-} > 0.52 { m GeV}$
Displaced vertex position	
$\begin{array}{ll} 0.2\ {\rm cm} < R < 0.9\ {\rm cm}\ or\ 17\ {\rm cm} < R < 60\ {\rm cm} & 0.2\ {\rm cm} < R < 60\ {\rm cm} \\ -55\ {\rm cm}\ \le z \le 140\ {\rm cm} & \\ 17^\circ \le \theta_{\rm lab} \le 150^\circ & \end{array}$	

Belle II LLP sensitivity for dark showers

Limits on low-energy effective theory from searches for displaced vertices:

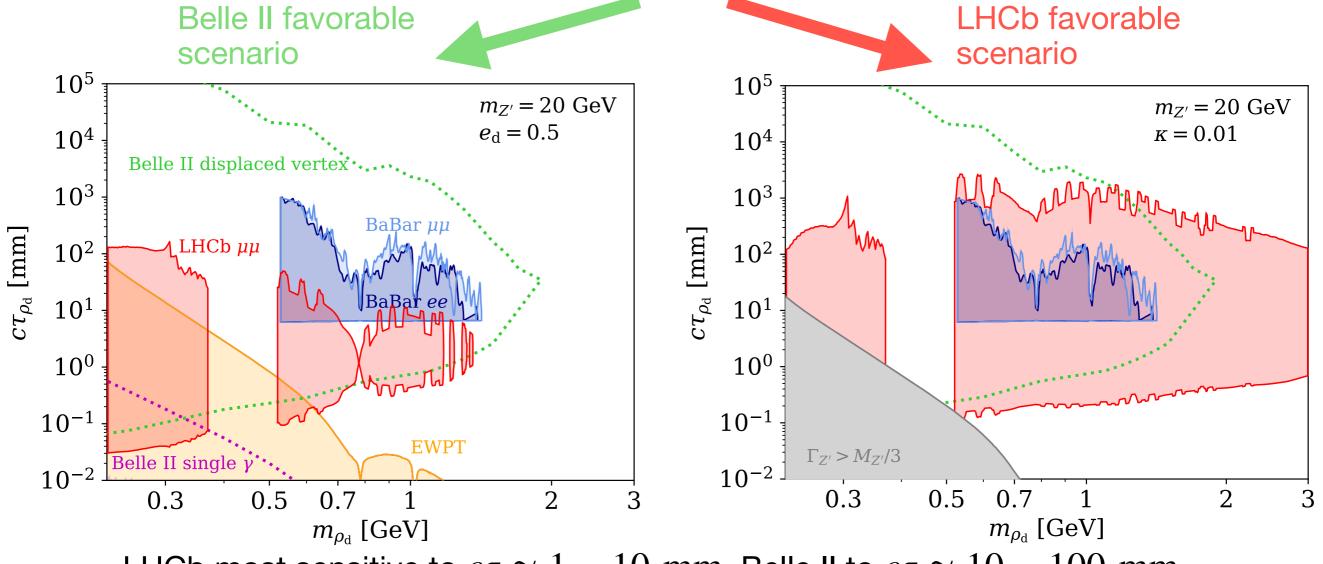


Projected limit on dark showers from DV search at Belle II

Displaced vertex search at Belle II can greatly improve over BaBar in cosmologically viable parameter space with just 500 fb^{-1} of data.

Complementary constraints

Additional constraints on the low-energy effective theory:



- Existing searches for visible resonances at BaBar and KLOE yield complementary constraints on promptly decaying dark mesons.
- Events with invisible dark shower and ISR photon lead to single photon signal with continuous energy spectrum.

Projection weaker than for bump hunt but competitive at small LLP mass

Probing the underlying interaction

- At high energies the mediator underlying the effective operator can be produced directly.
- LHCb search for displaced dimuon resonances complements Belle II for $10 \text{ GeV} < m_{Z'} \lesssim m_Z$ LHCb collaboration, arXiv:2007.03923
- LHCb sensitivity depends on combination of mediator couplings underlying Λ

- LHCb most sensitive to $c\tau \approx 1 10$ mm, Belle II to $c\tau \approx 10 100$ mm
- Strong case for Belle II search even in least favorable scenario

- Light strongly interacting dark sectors are well-motivated and can give rise to novel dark shower signals at Belle II.
- Separation Separation Separation Separation Separation
- Oisplaced vertex search at Belle II improves greatly on BaBar
- Additional constraints in prompt regime, in particular single photon search without resonance
- Itigh complementarity between intensity frontier experiments and LHC, in particular LHCb