

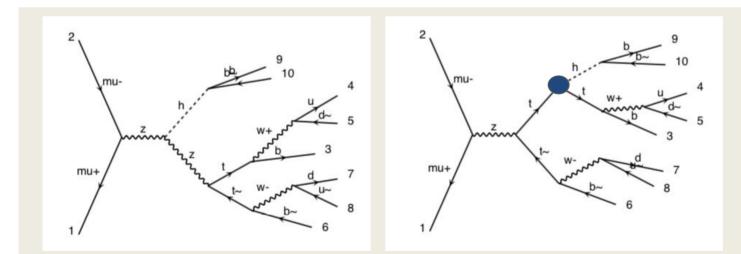
CP Structure of the Top Yukawa at a Multi TeV Muon Collider

Morgan Cassidy Zhongtian Dong, KC Kong, Ian Lewis, Yanzhe Zhang, Ya-Juan Zheng

Introduction

1

- Pt. II focus on CP Violation
- Chien-Shung Wu and the Wu experiment
 Parity Violation
- Goal and Motivation



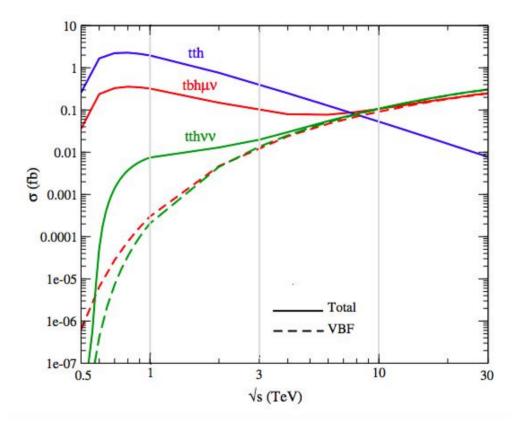
Top Yukawa Coupling

• Aim to explore CP tth violating coupling via tth, tth*vv*, and tbhµv. The tth interaction Lagrangian term modeled by:

$$\mathcal{L} = -\frac{m_t}{v} \kappa_t \bar{t} (\cos\alpha + i\gamma_5 \sin\alpha) th$$

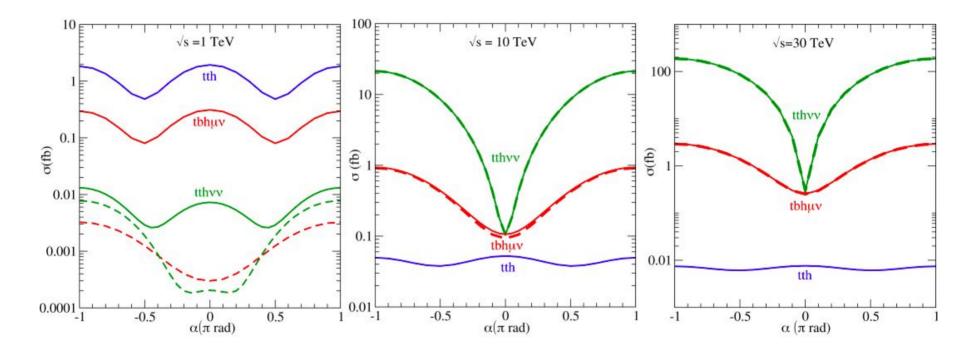
• Where alpha is the CP violating phase.

Representative Feynman diagrams for signal process tth with decay. The left diagram does not contain tth coupling. The right diagram tth coupling is marked in red.



Cross Section versus √s for the Standard Model

• XS versus c.o.m. energy from 500 GeV to 30 TeV for processes:


$$\mu^{+}\mu^{-} \rightarrow t\bar{t}h$$

$$\mu^{+}\mu^{-} \rightarrow t\bar{t}h\nu_{\ell}\bar{\nu_{\ell}}$$

$$\mu^{+}\mu^{-} \rightarrow tbh\mu\nu$$

 All processes generated through MadGraph5_aMC@NLO.

Cross Section versus CP Phase

- Cross section varying with cp phase from $-\pi$ to π for signal processes at 1, 10 and 30 TeV. Dashed lines show VBF contributions for tth*vv* and tbh μv .
- CP values are introduced in MadGraph5_aMC@NLO by incorporating a CPV model via FeynRules.

Benchmark Luminosities

 Using an estimated cross section at 10 TeV of 1 fb

$$L \gtrsim \frac{5 \, \mathrm{years}}{\mathrm{time}} \left(\frac{\sqrt{s}_{\mu}}{10 \, \mathrm{TeV}}\right)^2 2 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

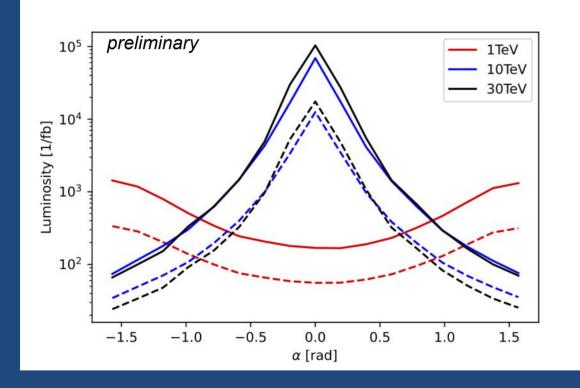
\sqrt{s} (TeV)	L (fb^{-1})	
1	100	
10	10,000	
30	10,000	

Table: Corresponding luminositiesfor each of the three benchmarkenergies.

2σ Exclusion & 5σ Discovery

- Log likelihood ratio used to determine 5σ discovery and 2σ exclusion.
- Likelihood function following Poisson distribution: $L(x|n) = \frac{x^n}{n!}e^{-x}$

$$\sigma_{dis} \equiv \sqrt{-2 \ln \left(\frac{L(B|Sig+B)}{L(Sig+B|Sig+B)}\right)}$$


$$\sigma_{exc} \equiv \sqrt{-2 \ln \left(\frac{L(Sig + B|B)}{L(B|B)}\right)}$$

Top: formula used to calculate 5σ significance

Bottom: formula used to calculate 2σ significance

Luminosity versus CP phase

7

Solid Lines:

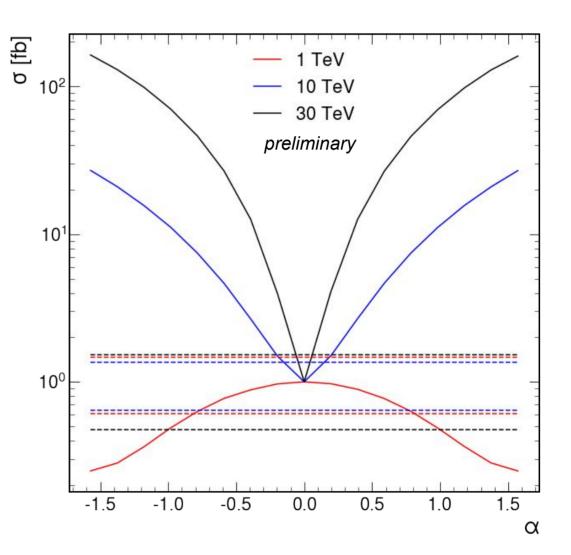
Corresponding luminosity required to achieve 5σ discovery for a particular α value.

Dashed Lines:

Luminosity required for 2σ exclusion of particular α value.

2σ Exclusion on CP phase

Bands give 2σ exclusion on α using benchmark luminosities


Solid Lines:

Combined signal cross section before cuts normalized to SM.

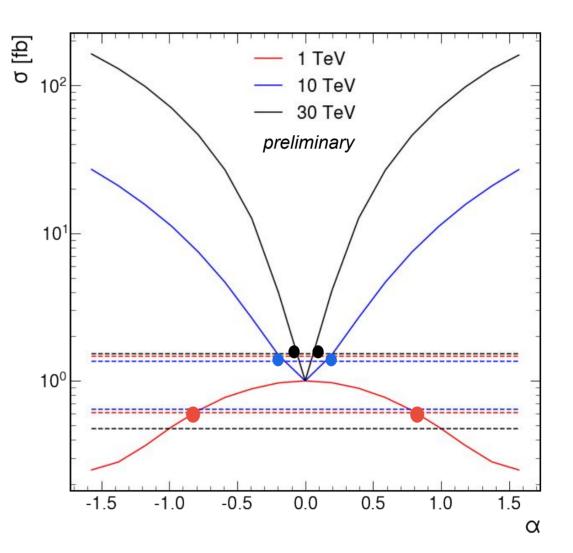
Dashed Bands:

Projected bounds at 95% CL normalized to SM.

Approximate values: $|\alpha| \leq 47^{\circ} \text{ at } 1 \text{ TeV}$ $|\alpha| \leq 9^{\circ} \text{ at } 10 \text{ TeV}$ $|\alpha| \leq 3^{\circ} \text{ at } 30 \text{ TeV}$

2σ Exclusion on CP phase

Bands give 2σ exclusion on α using benchmark luminosities


Solid Lines:

Combined signal cross section before cuts normalized to SM.

Dashed Bands:

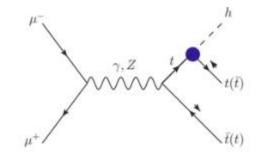
Projected bounds at 95% CL normalized to SM.

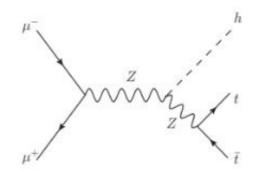
Approximate values: $|\alpha| \leq 47^{\circ} \text{ at } 1 \text{ TeV}$ $|\alpha| \leq 9^{\circ} \text{ at } 10 \text{ TeV}$ $|\alpha| \leq 3^{\circ} \text{ at } 30 \text{ TeV}$

2σ Exclusion on CP phase cont.

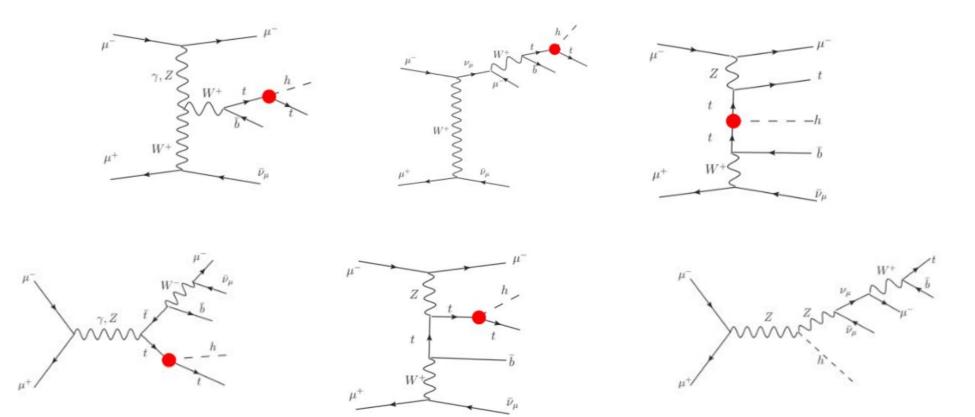
α bounds at 95% CL	Channel	Collider	
$ \alpha \lesssim 36^{\circ}$	$dileptonic \ t\bar{t}(h \to b\bar{b})$	HL -LHC	
$ lpha \lesssim 25^{\circ}$	$t\bar{t}(h \rightarrow \gamma \gamma)$ combination	HL-LHC	
$ \alpha \lesssim 3^{\circ}$	$dileptonic \ t\bar{t}(h \to b\bar{b})$	100 TeV FCC	
$ lpha \lesssim 9^{\circ}$	semileptonic $t\bar{t}(h \rightarrow b\bar{b})$	10 TeV muon collider	
$ \alpha \lesssim 3^{\circ}$	semileptonic $t\bar{t}(h \rightarrow b\bar{b})$	30 TeV muon collider	

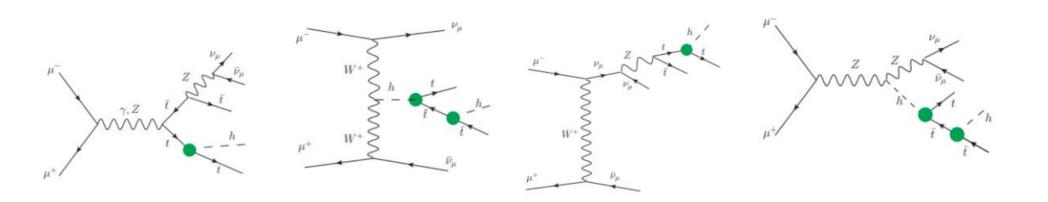
Table: bounds at 95% CL for α at different colliders.

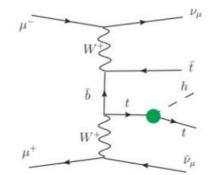

Directly Probing the CP-structure of the Higgs-Top Yukawa at HL-LHC and Future Colliders R. K. Barman, et.al.<u>http://arxiv.org/abs/2203.08127</u>

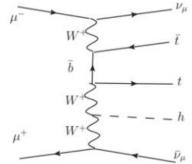


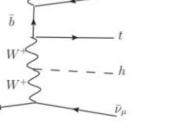
tth diagrams


- Diagrams independent of alpha:
- Can parameterize tth cross section as: $\sigma_{t\bar{t}h}(\alpha) = C^2 cos^2 \alpha + C^1 cos \alpha + C^0$


tbhµv diagrams






10

tthvv diagrams

tthvv

• for fixed \sqrt{s} can determine which contributions dominate

	$t\bar{t}h u\bar{ u}$				
$\sqrt{s}~({\rm TeV})$	1	3	10	30	
C^4	$-1.35\cdot10^{-4}$	$-4.41\cdot10^{-3}$	0.019	-0.43	
C^3	$7.04\cdot 10^{-5}$	-0.013	-0.17	-0.13	
C^2	$7.44\cdot 10^{-3}$	0.24	2.16	8.09	
C^1	$-3.00\cdot10^{-3}$	-0.58	-10.43	-93.23	
C^0	$2.89\cdot 10^{-3}$	0.38	8.53	86.00	

 $\sigma_{t\bar{t}h\bar{\nu}\nu}(\alpha) = C^4 \cos^4\alpha + C^3 \cos^3\alpha + C^2 \cos^2\alpha + C^1 \cos\alpha + C^0$

