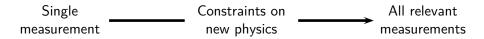
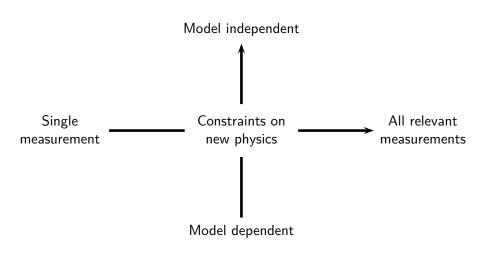
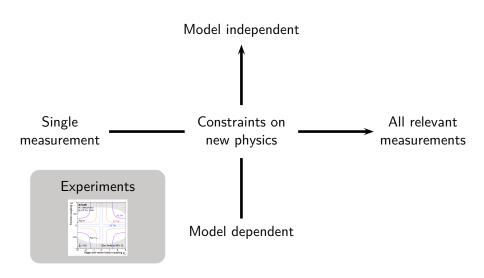
Catching Heavy Vector Triplets with the SMEFT:

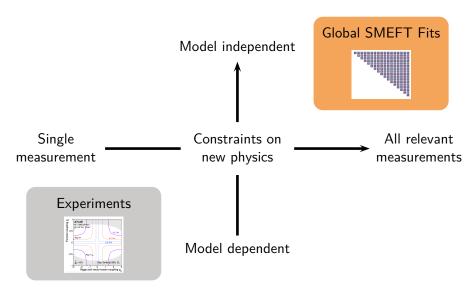
from one-loop matching to phenomenology

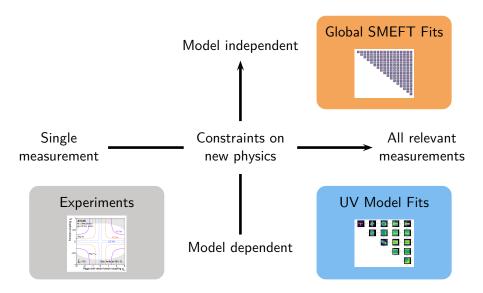
Emma Geoffray

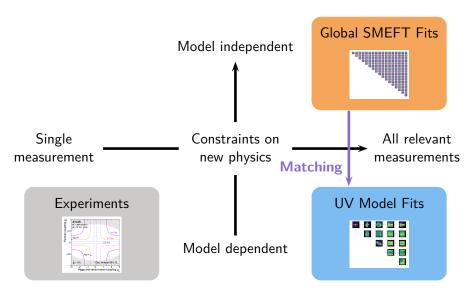

Institute for Theoretical Physics, Heidelberg University

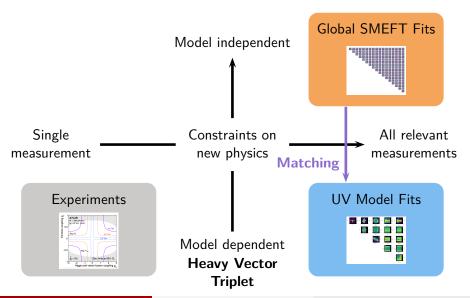

Phenomenology 2022


arXiv:2108.01094


Collaborators: Ilaria Brivio, Sebastian Bruggisser, Michel Luchmann, Tilman Plehn (Heidelberg University); Wolfgang Kilian (University of Siegen); Michael Kraemer (RWTH Aachen University); Benjamin Summ (University of Würzburg)


Constraints on new physics





2/16

Today's Agenda

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

Today's Agenda

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

Ingredients needed for the fit

• Fitter: SFitter [Lafaye, Plehn, Zerwas: hep-ph/0404282]

Ingredients needed for the fit

• Fitter: SFitter [Lafaye, Plehn, Zerwas: hep-ph/0404282]

Emma Geoffray Phenomenology 2022 5 / 16

Ingredients needed for the fit

• Fitter: SFitter [Lafaye, Plehn, Zerwas: hep-ph/0404282]

Measurements: Higgs, Gauge and Electroweak Precision

$$\mathcal{L}_{HVT} \ = \mathcal{L}_{SM} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{\mathbf{g}}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu}$$

$$+ \underbrace{\widetilde{\mathbf{g}}_{H}} \widetilde{V}^{\mu A} J^{A}_{H\mu} + \underbrace{\widetilde{\mathbf{g}}_{I}} \widetilde{V}^{\mu A} J^{A}_{I\mu} + \underbrace{\widetilde{\mathbf{g}}_{q}} \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{\mathbf{g}}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \, .$$

$$\begin{split} \mathcal{L}_{HVT} \; &= \mathcal{L}_{SM} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{\mathbf{g}}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \left. \widetilde{\mathbf{g}}_{H} \right. \widetilde{V}^{\mu A} J^{A}_{H\mu} + \left. \widetilde{\mathbf{g}}_{I} \right. \widetilde{V}^{\mu A} J^{A}_{I\mu} + \left. \widetilde{\mathbf{g}}_{q} \right. \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{\mathbf{g}}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \,. \end{split}$$

5 UV model parameters + mass

$$\begin{split} \mathcal{L}_{HVT} \; &= \mathcal{L}_{SM} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}_{V}^{2}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{\mathbf{g}}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \left. \widetilde{\mathbf{g}}_{H} \right. \widetilde{V}^{\mu A} J^{A}_{H\mu} + \left. \widetilde{\mathbf{g}}_{I} \right. \widetilde{V}^{\mu A} J^{A}_{I\mu} + \left. \widetilde{\mathbf{g}}_{q} \right. \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{\mathbf{g}}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \,. \end{split}$$

5 UV model parameters + mass + matching scale Q

... and an additional nuisance parameter from the matching at 1-loop!

$$\begin{split} \mathcal{L}_{HVT} \; &= \mathcal{L}_{SM} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{\mathbf{g}}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \underbrace{\widetilde{\mathbf{g}}_{H}} \widetilde{V}^{\mu A} J^{A}_{H\mu} + \underbrace{\widetilde{\mathbf{g}}_{I}} \widetilde{V}^{\mu A} J^{A}_{I\mu} + \underbrace{\widetilde{\mathbf{g}}_{q}} \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{\mathbf{g}}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \,. \end{split}$$

5 UV model parameters + mass + matching scale Q

Low and high kinematic measurements in the Higgs, Gauge and EWP sectors are included

 Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]

• High kinematics constrain kinematically enhanced operators

Low and high kinematic measurements in the Higgs, Gauge and EWP sectors are included

- Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]
 - Higgs measurements at LHC (275)
 - Di-boson measurements at LHC (43)
 - Electroweak Precision Observables at LEP (14)
- High kinematics constrain kinematically enhanced operators

Low and high kinematic measurements in the Higgs, Gauge and EWP sectors are included

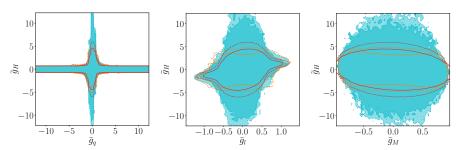
- Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]
 - Higgs measurements at LHC (275)
 - Di-boson measurements at LHC (43)
 - Electroweak Precision Observables at LEP (14)
- High kinematics constrain kinematically enhanced operators
 - VH resonance searches by ATLAS: 1712.06518 and 2007.05293
 - VV resonance search by ATLAS: 2004.14636

Today's Agenda

1. Ingredients

2. Results

3. Conclusions and Outlook


Varying the matching scale introduces (large) theoretical uncertainties

The matching scale Q should be treated as a nuisance parameter, i.e. an additional theory uncertainty.

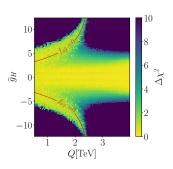
Varying the matching scale introduces (large) theoretical uncertainties

The matching scale Q should be treated as a nuisance parameter, i.e. an additional theory uncertainty.

Changes to this matching scale affect the bounds on \widetilde{g}_H !

Tree level matching

1-loop level matching for Q = 4 TeV

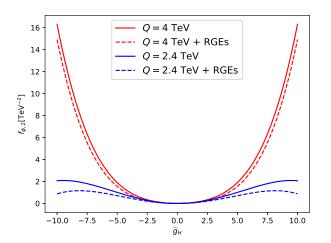

1-loop level matching for $Q \in [0.5, 4]$ TeV

[Other paper considering Q: Dawson, Giardino, Homiller: 2102.02823]

Varying the matching scale introduces (large) theoretical uncertainties

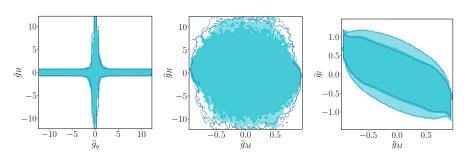
The matching scale Q should be treated as a nuisance parameter, i.e. an additional theory uncertainty.

Changes to this matching scale affect the bounds on \widetilde{g}_H !



Flower due to tree-loop cancellation in $f_{\phi,2}, f_t, f_b, f_{\tau}$

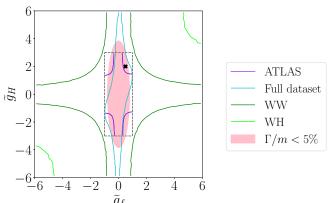
Physical mass:
$$m_V = \frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_{td}^2}} = 4\text{TeV}$$


[Other paper considering Q: Dawson, Giardino, Homiller: 2102.02823]

RGEs for SMEFT parameters do not compensate for this tree-loop cancellation

RGEs for HVT parameters are not yet available in the literature.

For the HVT model, the greatest constraints come from EWPOs and not heavy resonance searches with high kinematic reach

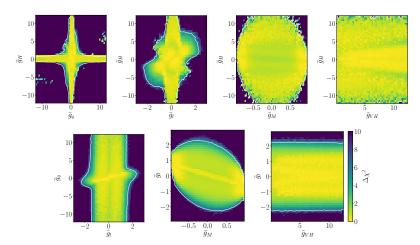


Heavy resonances searches included

Heavy resonances searches excluded

[ATLAS Collaboration: 1712.06518, 2004.14636, 2007.05293]

Direct searches constraints are stronger than constraints set through a SMEFT fit with the same analysis



95CL limits, physical mass:
$$m_V = \frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_M^2}} = 4 \text{TeV}.$$

Emma Geoffray

[ATLAS Collaboration: 2007.05293]

But SMEFT limits reach beyond the range of direct searches and constrain more parameters at once

We get constraints for $m_V = \frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_M^2}} = 8\text{TeV}$, where direct resonance searches don't exist. And we fit in the full 5 parameter model space.

Today's Agenda

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

SMEFT analyses and direct searches are highly complementary

• Where direct searches for heavy resonances exist, they give better constraints than the same distributions used in a SMEFT framework.

SMEFT analyses and direct searches are highly complementary

• Where direct searches for heavy resonances exist, they give better constraints than the same distributions used in a SMEFT framework.

• The full SMEFT constraints are comparable to the constraints from direct searches for heavy resonances in \widetilde{g}_H , and stronger in \widetilde{g}_f , thanks to the EWPOs.

SMEFT analyses and direct searches are highly complementary

• Where direct searches for heavy resonances exist, they give better constraints than the same distributions used in a SMEFT framework.

• The full SMEFT constraints are comparable to the constraints from direct searches for heavy resonances in \widetilde{g}_H , and stronger in \widetilde{g}_f , thanks to the EWPOs.

 The full SMEFT results also set constraints on all relevant UV model parameters at once and in regions beyond the reach of direct searches.

• Use elements of an **existing SMEFT fit** (SFitter framework, SMEFT operators, measurements).

- Use elements of an **existing SMEFT fit** (SFitter framework, SMEFT operators, measurements).
- Match the model onto the SMEFT at 1-loop.

- Use elements of an **existing SMEFT fit** (SFitter framework, SMEFT operators, measurements).
- Match the model onto the SMEFT at 1-loop.
- Treat the matching scale as a nuisance parameter, which can have big effects.

- Use elements of an **existing SMEFT fit** (SFitter framework, SMEFT operators, measurements).
- Match the model onto the SMEFT at 1-loop.
- Treat the matching scale as a nuisance parameter, which can have big effects.

What is your preferred model?

The SFitter framework samples the likelihood function for a chosen model space

[Lafaye, Plehn, Zerwas: hep-ph/0404282]

• What we compute: likelihood function

$$\mathcal{L}(M) = \mathcal{L}(D|M) = p(D|M)$$

- How we scan the parameter space: Markov chains
- How we measure the goodness of fit: likelihood ratio (statistical test)

$$\frac{\mathcal{L}(D|M_1)}{\mathcal{L}(D|M_2)}$$

We match the model onto the SMEFT

The matching procedure ensures that all matrix element in the SMEFT and the HVT are equal at $\mu = Q$.

[Appelquist, Carazzone: 10.1103/PhysRevD.11.2856 | Weinberg: 10.1103/PhysRevD.19.1277]

$$\Rightarrow \quad \frac{c_i}{\Lambda^2} \big(\widetilde{\mathbf{g}}_{\mathsf{M}}, \widetilde{\mathbf{g}}_{\mathsf{H}}, \widetilde{\mathbf{g}}_{\mathsf{I}}, \widetilde{\mathbf{g}}_{\mathsf{q}}, \widetilde{\mathbf{g}}_{\mathsf{VH}}, \widetilde{\mathbf{m}}_{\mathsf{V}}, Q \big)$$

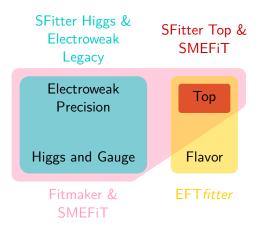
Matching is done at 1-loop using the functional matching formalism.

[Benjamin Summ, 2103.02487 or 2108.01094, GIT REPOSITORY]

We focus on specific SMEFT sectors

Standard Model Effective Field Theory:

- Assume new physics is heavier than SM (no new light particles).
- Take the symmetries and particle content of the SM.
- Higher order operators mediating new interactions are classified in an expansion in $1/\Lambda$:


$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{d \le 4} + \frac{1}{\Lambda} c \, \mathcal{O}^{d=5} + \left[\frac{1}{\Lambda^2} \sum_{i} c_i \, \mathcal{O}_i^{d=6} \right] + \dots$$
59 operators, too many...

Focus on Higgs, Gauge and Electroweak Precision sectors \Rightarrow 17 operators / Wilson coefficients

We use the HISZ basis

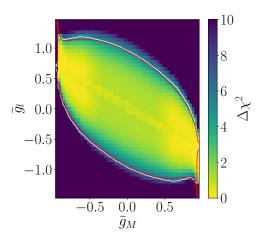
Not generated by matching	[Hagiwara, Ishihara, Szalapski, Zeppenfeld: 10.1016/0370-2693(92)90031-X]
$\mathcal{O}_{GG} \equiv \psi^\dagger \psi G^\omega_{\mu u} G^{a \mu u}$	$\mathcal{O}_{BW} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi$
$\mathcal{O}_{BB} = \phi^\dagger \hat{B}_{\mu u} \hat{B}^{\mu u} \phi$	$\mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu u} \hat{W}^{\mu u} \phi$
$\mathcal{O}_B = (D_\mu \phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \phi)$	$\mathcal{O}_W = (D_\mu \phi)^\dagger \hat{W}^{\mu u} (D_ u \phi)$
$\mathcal{O}_{WWW} = \operatorname{Tr}\left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}_{\rho}^{\ \mu}\right)$	
$\mathcal{O}_{\phi 1} = \left(D_{\mu}\phi\right)^{\dagger}\phi\phi^{\dagger}\left(D^{\mu}\phi\right)$	$\mathcal{O}_{\phi 2} = rac{1}{2}\partial^{\mu}\left(\phi^{\dagger}\phi ight)\partial_{\mu}\left(\phi^{\dagger}\phi ight)$
$\mathcal{O}_b = (\phi^\dagger \phi) ar{q}_3 \phi d_3$	${\cal O}_{ au} = (\phi^\dagger \phi) ar{l}_3 \phi e_3$
$\mathcal{O}_t = (\phi^\dagger \phi) ar{q}_3 \widetilde{\phi} u_3$	
$\mathcal{O}_{LLLL} = \left(ar{l}_1 \gamma_{\mu} l_2 ight) \left(ar{l}_2 \gamma^{\mu} l_1 ight)$	$\mathcal{O}_{\phi e} = (\phi^\dagger i \overleftrightarrow{D}_\mu \phi) \left(ar{e}_i \gamma^\mu e_j ight) \delta^{ij}$
$\mathcal{O}_{\phi d} = (\phi^\dagger i \overleftrightarrow{D}_\mu \phi) \left(ar{d}_i \gamma^\mu d_j ight) \delta$	· · · · · · · · · · · · · · · · · · ·
${\cal O}_{\phi Q}^{(1)} = (\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (ar{q}_i \gamma^\mu q_j) \delta^{ij}$	${\cal O}_{\phi Q}^{(3)} = (\phi^\dagger i \stackrel{\longleftrightarrow}{D_\mu^A} \phi) \left(ar{q}_i \gamma^\mu t^A q_j \right) \delta^{ij}$

Different groups focus on different sectors

Obstacle to joining fits:

more operators \Rightarrow more CPU time.

Solution:


Bayesian approach (work in progress)

SFitter Higgs & Electroweak Legacy: 1812.07587, 2108.04828, 1812.01009, 1604.03105 | SFitterTop: 1910.03606 | SMEFiT: 1901.05965, 2105.00006 | Fitmaker: 2012.02779 | EFT fitter: arXiv:2012.10456

For each measurement, we include a careful uncertainty treatment

- Consider uncertainties on signal and background measurements,
 SM predictions, and SMEFT Monte Carlo predictions.
- Assign to each uncertainty the correct probability distribution: gaussian, flat, or poissonian.
- Decide which uncertainties to correlate or uncorrelate.

Limits on $(\widetilde{g}_M, \widetilde{g}_l)$ are given by $f_{LLLL} = C_{ll,1221}$

$$f_{LLLL}/\Lambda^2 = -0.014, +0.017 \text{TeV}^{-2}$$

 $(2\sigma \text{ interval derived from a 2D fit of } f_{LLL} \text{ and } f_{BW})$

What would be useful for theorists implementing diboson resonance searches in SMEFT fits

- Clear uncertainties breakdown (table)
- Invariant mass distributions on HEPData
- Way to reproduce one background and the SM signal from MC simulations (Madgraph+Pythia+Delphes) up to a k-factor:
 - either cut based analysis
 - or ANN publicly available?
 - or unfolding?