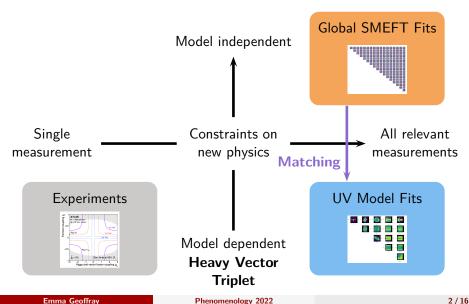
Catching Heavy Vector Triplets with the SMEFT:

from one-loop matching to phenomenology

Emma Geoffray


Institute for Theoretical Physics, Heidelberg University

Phenomenology 2022

arXiv:2108.01094

Collaborators: Ilaria Brivio, Sebastian Bruggisser, Michel Luchmann, Tilman Plehn (Heidelberg University); Wolfgang Kilian (University of Siegen); Michael Kraemer (RWTH Aachen University); Benjamin Summ (University of Würzburg)

We constrain new physics along two axes: measurements and models

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

Ingredients needed for the fit

• Fitter: SFitter [Lafaye, Plehn, Zerwas: hep-ph/0404282]

Measurements: Higgs, Gauge and Electroweak Precision

5/16

Our model space corresponds to parameters of the Heavy Vector Triplet model...

... and an additional nuisance parameter from the matching at 1-loop!

$$\begin{split} \mathcal{L}_{HVT} \; &= \mathcal{L}_{SM} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{\mathbf{g}}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \underbrace{\widetilde{\mathbf{g}}_{H}} \widetilde{V}^{\mu A} J^{A}_{H\mu} + \underbrace{\widetilde{\mathbf{g}}_{I}} \widetilde{V}^{\mu A} J^{A}_{I\mu} + \underbrace{\widetilde{\mathbf{g}}_{q}} \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{\mathbf{g}}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \,. \end{split}$$

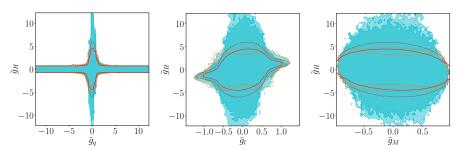
5 UV model parameters + mass + matching scale Q

[Low, Rattazzi, Vichi: 0907.5413 | del Aguila, de Blas, Perez-Victoria: 1005.3998 | Pappadopulo, Thamm, Torre, Wulzer: 1402.4431 | Biekoetter, Knochel, Kraemer, Liu, Riva: 1406.7320 | Brehmer, Freitas, Lopez-Val, Plehn: 1510.03443]

Low and high kinematic measurements in the Higgs, Gauge and EWP sectors are included

- Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]
 - Higgs measurements at LHC (275)
 - Di-boson measurements at LHC (43)
 - Electroweak Precision Observables at LEP (14)
- High kinematics constrain kinematically enhanced operators
 - VH resonance searches by ATLAS: 1712.06518 and 2007.05293
 - VV resonance search by ATLAS: 2004.14636

1. Ingredients


2. Results

3. Conclusions and Outlook

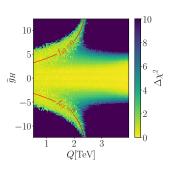
Varying the matching scale introduces (large) theoretical uncertainties

The matching scale ${\it Q}$ should be treated as a nuisance parameter, i.e. an additional theory uncertainty.

Changes to this matching scale affect the bounds on \widetilde{g}_H !

Tree level matching

1-loop level matching for Q = 4 TeV

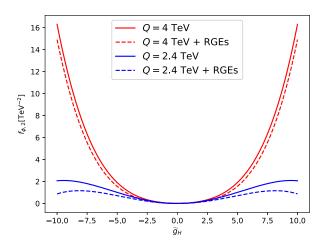

1-loop level matching for $Q \in [0.5, 4]$ TeV

[Other paper considering Q: Dawson, Giardino, Homiller: 2102.02823]

Varying the matching scale introduces (large) theoretical uncertainties

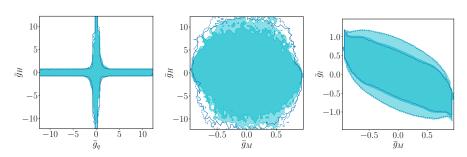
The matching scale Q should be treated as a nuisance parameter, i.e. an additional theory uncertainty.

Changes to this matching scale affect the bounds on \widetilde{g}_H !



Flower due to tree-loop cancellation in $f_{\phi,2}, f_t, f_b, f_{\tau}$

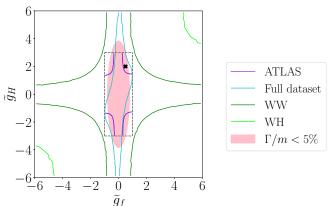
Physical mass:
$$m_V = \frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_M^2}} = 4\text{TeV}$$


[Other paper considering Q: Dawson, Giardino, Homiller: 2102.02823]

RGEs for SMEFT parameters do not compensate for this tree-loop cancellation

RGEs for HVT parameters are not yet available in the literature.

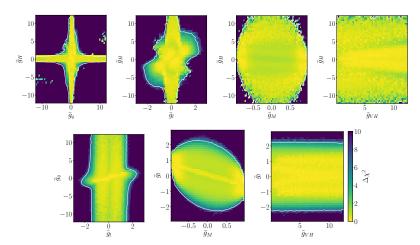
For the HVT model, the greatest constraints come from EWPOs and not heavy resonance searches with high kinematic reach



Heavy resonances searches included

Heavy resonances searches excluded

[ATLAS Collaboration: 1712.06518, 2004.14636, 2007.05293]


Direct searches constraints are stronger than constraints set through a SMEFT fit with the same analysis

95CL limits, physical mass: $m_V = \frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_M^2}} = 4 \text{TeV}.$

[ATLAS Collaboration: 2007.05293]

But SMEFT limits reach beyond the range of direct searches and constrain more parameters at once

We get constraints for $m_V=\frac{\widetilde{m}_V}{\sqrt{1-\widetilde{g}_M^2}}=8\text{TeV}$, where direct resonance searches don't exist. And we fit in the full 5 parameter model space.

- 1. Ingredients
- 2. Results
- 3. Conclusions and Outlook

SMEFT analyses and direct searches are highly complementary

• Where direct searches for heavy resonances exist, they give better constraints than the same distributions used in a SMEFT framework.

• The full SMEFT constraints are comparable to the constraints from direct searches for heavy resonances in \widetilde{g}_H , and stronger in \widetilde{g}_f , thanks to the EWPOs.

 The full SMEFT results also set constraints on all relevant UV model parameters at once and in regions beyond the reach of direct searches.

How to use global SMEFT fits to constrain a UV Model

- Use elements of an **existing SMEFT fit** (SFitter framework, SMEFT operators, measurements).
- Match the model onto the SMEFT at 1-loop.
- Treat the matching scale as a nuisance parameter, which can have big effects.

What is your preferred model?