
# Thermal Friction as a Solution to the Hubble and the Large-Scale Structure Tensions

Kim V. Berghaus, YITP Stony Brook
Based on 2204.09133

## **The Hubble Tension**



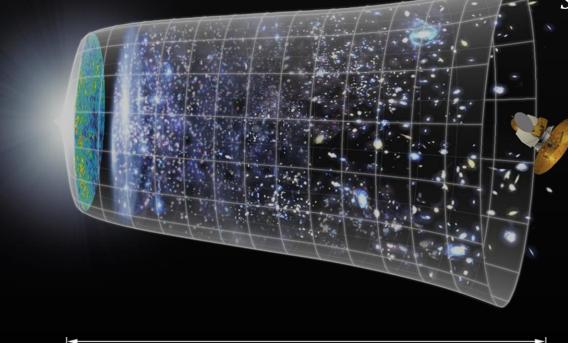
Direct measurement

 $H_0 = 73.3 \pm 1.0$  km/s/Mpc shoes 2022

## The Large-Scale Structure Tension

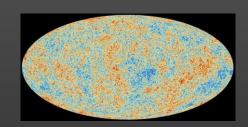
∧CDM + CMB measurement

 $S_8 = 0.82 \pm 0.01$  Planck 2018


~ 2 - 3 *\sigma* 

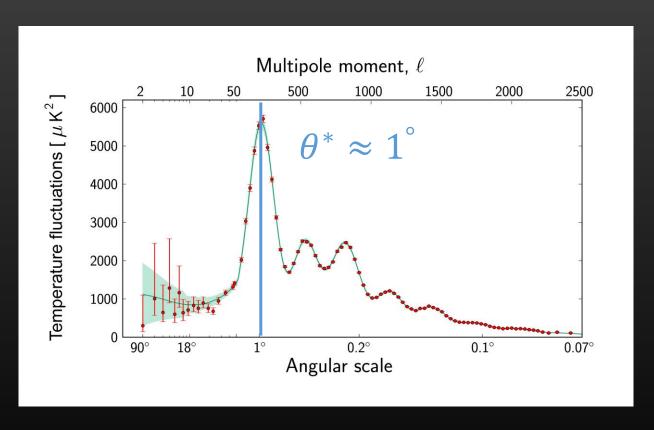
Galaxy clustering + weak lensing (DES Y1)

 $S_8 = 0.77 \pm 0.02$  DES 2017


$$S_8 = \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$$

Amplitude of matter fluctuations

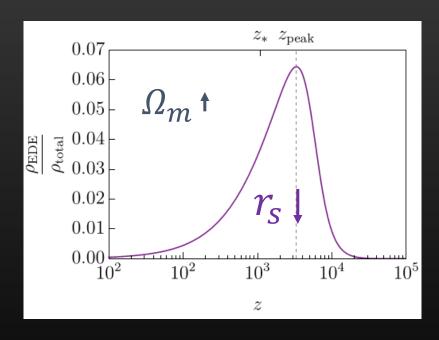



13.77 billion years

## The Hubble Measurement with the CMB

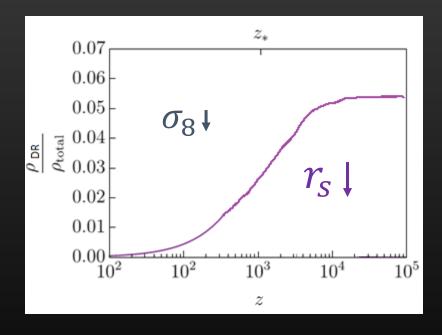


$$\theta^* \propto r_{\rm s} H_0$$


- $r_s$  depends only on physics before formation of CMB
- Lowering  $r_s$  increases  $H_0$



Planck 2018


## New physics that can lower the sound horizon

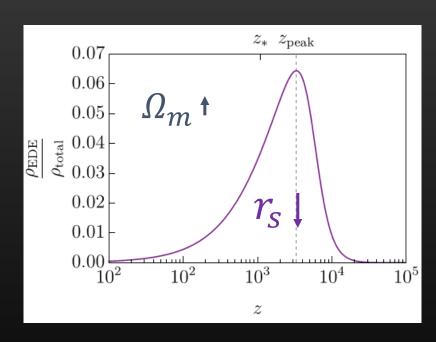
#### **Early Dark Energy**



$$S_8 = \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$$

#### **Extra Radiation**

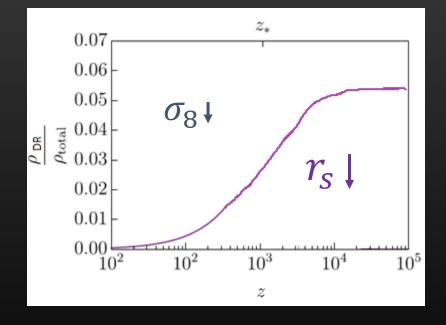



Maintains great fit to CMB Resolves H0 but exacerbates LSS tension (Hill et. al., 2020, Ivanov et al. 2020) Is fine-tuned

Worsens fit to CMB
Can ease LSS and Hubble tension

## New physics that can lower the sound horizon

#### Early Dark Energy with thermal friction


#### **Extra Radiation**

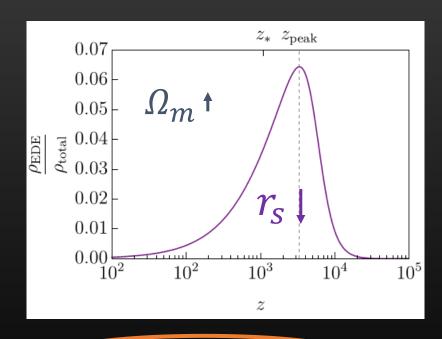


Sinctined (Berghaus, Karwal 2020)

#### combines

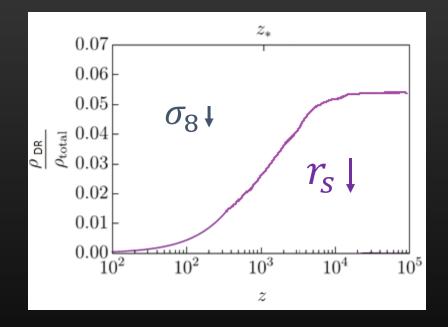
$$S_8 = \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$$




Maintains great fit to CMB
Resolves H0 but exacerbates LSS tension (Hill et. al., 2020, Ivanov et al. 2020)

Worsens fit to CMB
Can ease LSS and Hubble tension

## New physics that can lower the sound horizon


#### Early Dark Energy with thermal friction

#### **Extra Radiation**

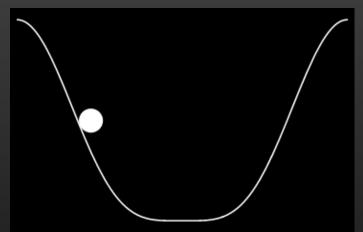


#### combines

$$S_8 = \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$$



Maintains great fit to CMB ?


Resolves HO but exacerbates LSS tension (Hill et. al., 2020, Ivanov et al. 2020)

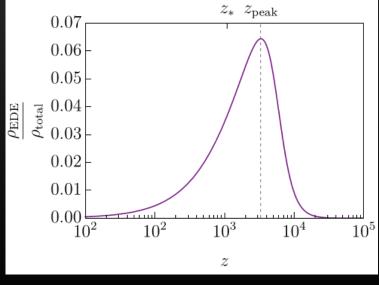
S Time tuned (Berghaus, Karwal 2020)

Worsens fit to CMB

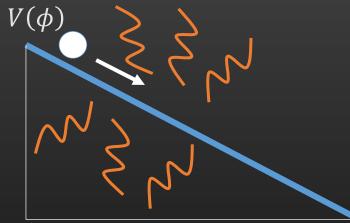
Can ease LSS and Hubble tension

## **Early Dark Energy**




 $z_*$   $z_{\text{peak}}$   $10.0 - \rho_r + \rho_m$   $1.00 - \rho_{\text{EDE}}$   $0.01 - \rho_{\text{EDE}}$   $0.001 - \rho_{\text{EDE}}$   $0.001 - \rho_{\text{EDE}}$   $0.001 - \rho_{\text{EDE}}$   $0.001 - \rho_{\text{EDE}}$ 

Frozen at early times by Hubble friction

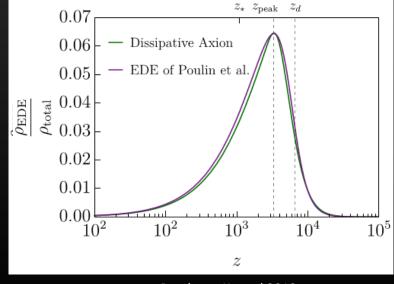

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$

Dilutes away as radiation or faster when axion starts oscillating at critical redshift  $z_{\it c}$ 

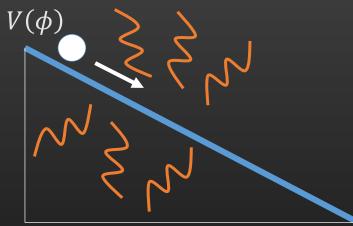
$$V \propto \left(1 - \cos\frac{\phi}{f}\right)^n$$
$$n \ge 2$$



## **Early Dark Energy with thermal friction**




 $z_*$   $z_{\text{peak}}$   $z_d$  10.0  $\rho_r + \rho_m$   $\rho_{\text{dr}}$  1.00 0.01 0.001 0.001 0.001


Frozen at early times by thermal friction

$$\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V' = 0$$
$$\dot{\rho}_{DR} + 4H\rho_{DR} = \Upsilon\dot{\phi}^{2}$$

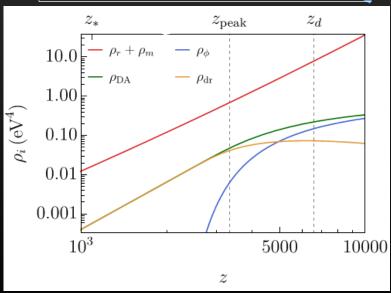
Overdamped at all time. Axion converts its energy into dark radiation at critical redshift  $z_c$ 

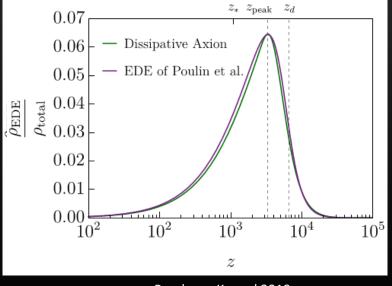


## **Early Dark Energy with thermal friction**



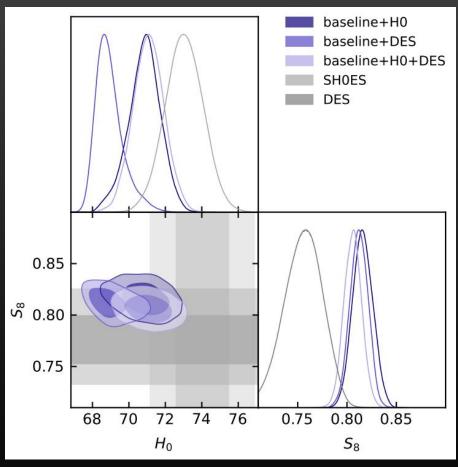
Frozen at early times by thermal friction


$$\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V' = 0$$
$$\dot{\rho}_{DR} + 4H\rho_{DR} = \Upsilon\dot{\phi}^{2}$$

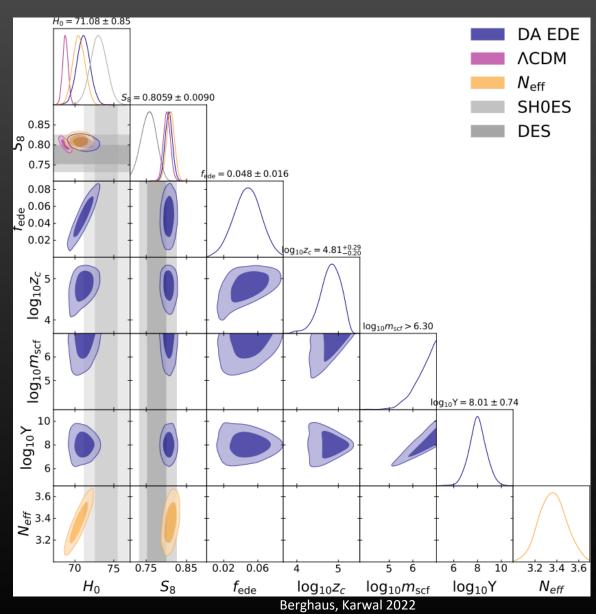

Kim V. Berghaus, YITP

Overdamped at all time. Axion converts its energy into dark radiation at critical redshift  $z_c$ 

Thermal friction generically arises for axions couplings to gauge fields

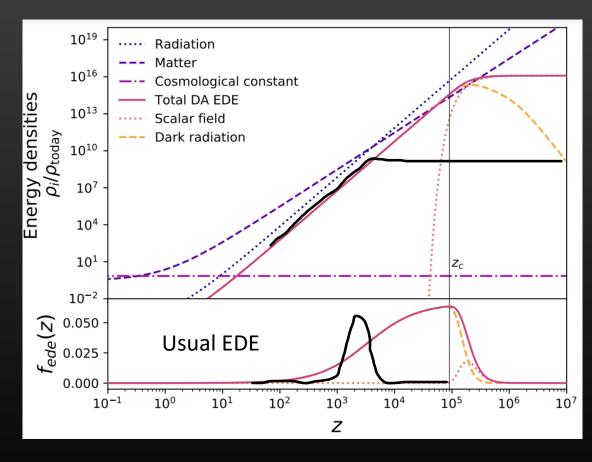

$$L_{\rm int} = -\phi \frac{\alpha}{16\pi f} \tilde{G} G$$



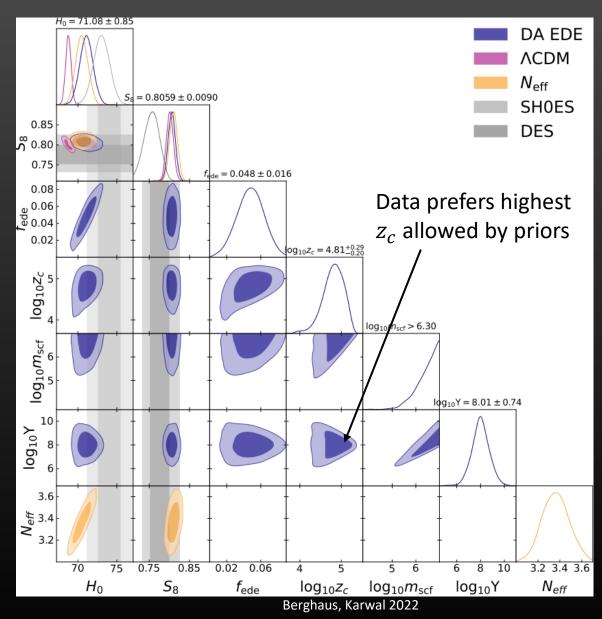



#### Baseline + SH0ES + DES

## Results




Berghaus, Karwal 2022




#### Baseline + SH0ES + DES

## Results



Berghaus, Karwal 2022



## **Conclusions**

- Thermal friction arises generically for rolling axions
- Thermal friction can resolve EDE fine-tuning at background level
- BUT data prefers thermal friction that asymptotes to extra radiation at high  $z_{\it c}$
- Extra radiation eases the Hubble and the LSS tension but does not resolve it

05/09/2022 Pheno 2022 Kim V. Berghaus, YITP 13

## Thank You

## **Back-up**

## **Analysis**

- thermal friction in CLASS:  $V(\phi) = \frac{1}{2}m^2\phi^2$
- Effective parameters:  $f_{ede}$ ,  $z_c(m, \Upsilon)$ , m
- Data sets:
  - Planck 2018 CMB (TTTEEE) + lensing
  - BAO (BOSS DR12, SDSS Main Galaxy Sample, 6dFGS)
  - Pantheon Supernovae sample
  - SH0ES measurement  $H_0 = 73.04 \pm 1.04$  km/s/Mpc
  - Dark Energy Survey Year 1 galaxy lensing and clustering

baseline

## Why does data not prefer EDE thermal friction?

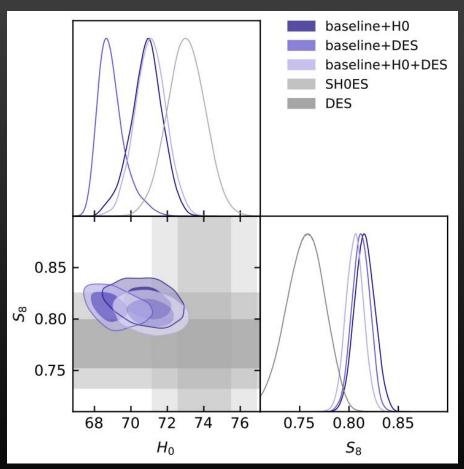
Answer must be in perturbations since background looks favorable

$$\delta\phi'' + 2aH\delta\phi' + \left(k^2 + a^2V''(\phi)\right)\delta\phi = -\frac{h'\phi'}{2}$$

Regular EDE perturbations

$$\delta\phi'' + 2aH\delta\phi' + \left(k^2 + a^2V''(\phi)\right)\delta\phi = -\frac{h'\phi'}{2} - a\Upsilon\delta\phi'$$

Axion perturbations with thermal friction


$$\delta_{DR}' = -\frac{2h'}{3} - \frac{4}{3}\theta_{DR} + \frac{2\Upsilon}{a\rho_{DR}}\delta\phi'\phi' - \frac{\Upsilon\phi'^2}{a\rho_{DR}}\delta_{DR}$$

$$\delta_{DR} \equiv \frac{\delta\rho_{DR}}{\rho_{DR}} \qquad \theta_{DR} \equiv ik^jv_j \qquad \text{Sourcing of DR} \\ \text{smoothes anisotropies}$$

Dark radiation perturbations sourced by thermal friction

05/09/2022 Pheno 2022 Kim V. Berghaus, YITP 17

## Results



Berghaus, Karwal 2022

| Model                  | $H_0 [\mathrm{km/s/Mpc}]$ | $S_8$                       |
|------------------------|---------------------------|-----------------------------|
| $\Lambda \mathrm{CDM}$ | $68.76(68.63) \pm 0.36$   | $0.8013(0.8055) \pm 0.0087$ |
| DA EDE                 | $71.08(71.06) \pm 0.85$   | $0.8058(0.8075) \pm 0.0089$ |
| $N_{ m eff}$           | $70.50(70.86) \pm 0.78$   | $0.8102(0.8106) \pm 0.0096$ |

Table VI. 1D marginalized posteriors of measurements quantifying the two cosmological tensions, fitting to base- $line+H_0+DES$ .

| Mo               | odel | $\chi^2_{ m CMB}$ | $\chi^2_{H_0}$ | $\chi^2_{ m DES}$ |
|------------------|------|-------------------|----------------|-------------------|
| $\Lambda$ C      | CDM  | 2778.4            | 18.0           | 508.0             |
| $\mathbf{D}^{A}$ | EDE  | 2778.7            | 3.6            | 508.3             |
| $N_{ m e}$       | ff   | 2783.3            | 4.4            | 508.8             |

Table VII. The goodness of fit to CMB and DES data, while cumulatively fitting to  $baseline+H_0+DES$ .

| Model                       | $\chi^2_{ m CMB}$ | $\chi^2_{H_0}$ |
|-----------------------------|-------------------|----------------|
| $\Lambda \text{CDM}$        | 2777.5            | 18.8           |
| $\mathrm{DA}\ \mathrm{EDE}$ | 2780.3            | 2.4            |
| $N_{ m eff}$                | 2780.0            | 7.2            |

Table III. The goodness of fit to CMB data and SH0ES, while cumulatively fitting to  $baseline+H_0$ . For reference,  $\Lambda$ CDM fit just to baseline has  $\chi^2_{\text{CMB}} = 2772.6$ .

| Model                  | $\chi^2_{\rm CMB}$ | $\chi^2_{ m DES}$ |
|------------------------|--------------------|-------------------|
| $\Lambda \mathrm{CDM}$ | 2774.1             | 509.3             |
| DA EDE                 | 2774.7             | 509.4             |
| $N_{ m eff}$           | 2776.0             | 508.1             |

Table V. The goodness of fit to CMB and DES data, while cumulatively fitting to baseline+DES.

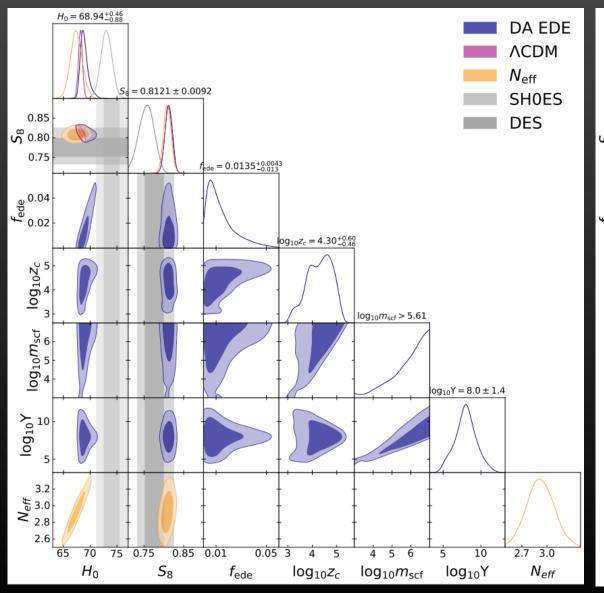
| Model                  | $\chi^2_{ m CMB}$ | $\chi^2_{H_0}$ | $\chi^2_{ m DES}$ |
|------------------------|-------------------|----------------|-------------------|
| $\Lambda \mathrm{CDM}$ | 2778.4            | 18.0           | 508.0             |
| DA EDE                 | 2778.7            | 3.6            | 508.3             |
| $N_{ m eff}$           | 2783.3            | 4.4            | 508.8             |

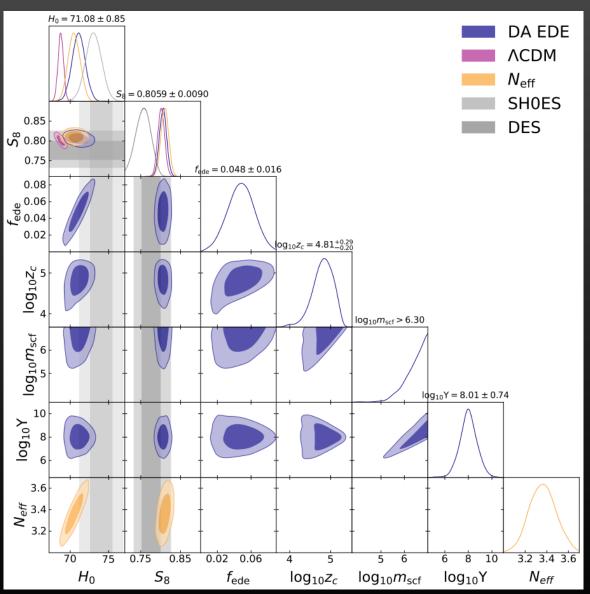
Table VII. The goodness of fit to CMB and DES data, while cumulatively fitting to  $baseline+H_0+DES$ .

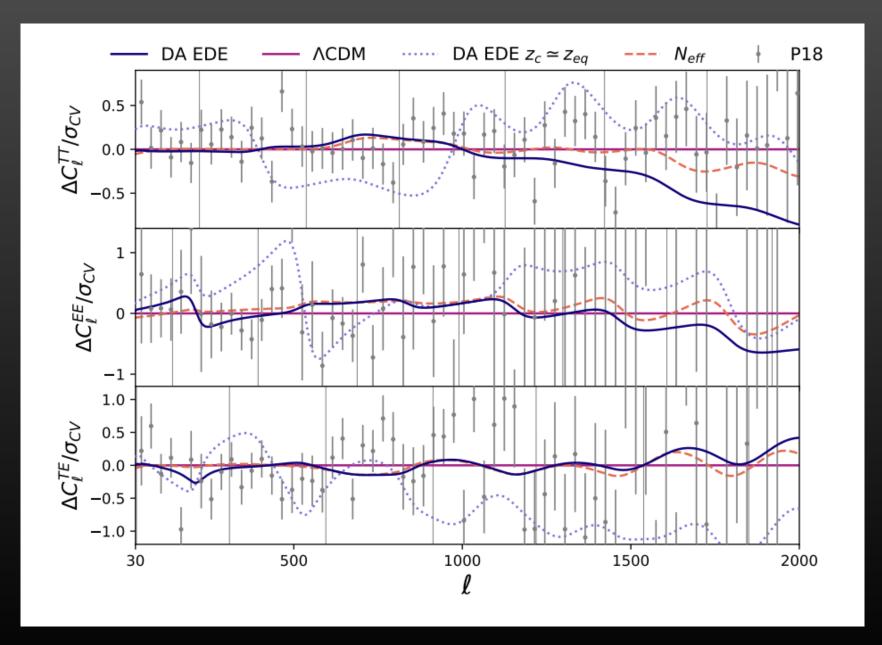
| Model                  | $H_0 [\mathrm{km/s/Mpc}]$      | $S_8$                        |
|------------------------|--------------------------------|------------------------------|
| $\Lambda \mathrm{CDM}$ | $68.44(68.53) \pm 0.39$        | $0.8093(0.8095) \pm 0.0100$  |
| DA EDE                 | $70.85(71.43)^{+0.93}_{-0.80}$ | $0.8159(0.8157) \pm 0.0102$  |
| $N_{ m eff}$           | $70.53(70.25) \pm 0.76$        | $0.8241 (0.8228) \pm 0.0111$ |

Table II. 1D marginalized posteriors of measurements quantifying the two cosmological tensions, fitting to  $baseline+H_0$ 

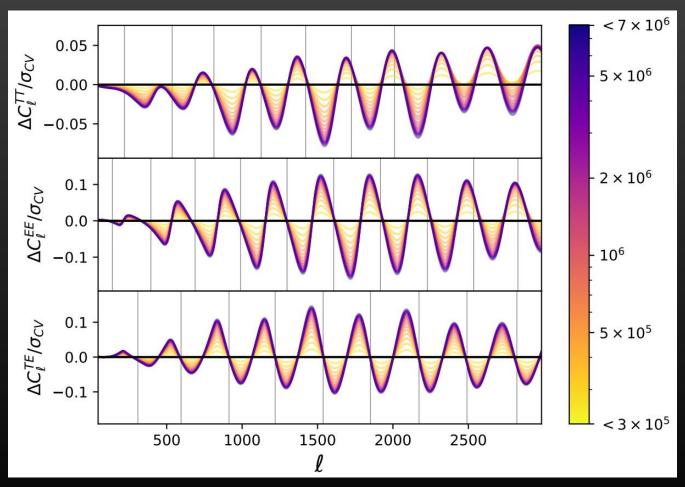
| Model                  | $H_0 [\mathrm{km/s/Mpc}]$      | $S_8$                       |
|------------------------|--------------------------------|-----------------------------|
| $\Lambda \mathrm{CDM}$ | $68.19(68.08) \pm 0.38$        | $0.8115(0.8128) \pm 0.0091$ |
| DA EDE                 | $68.94(68.38)^{+0.46}_{-0.88}$ | $0.8120(0.8133) \pm 0.0091$ |
| $N_{ m eff}$           | $67.4(67.2) \pm 1.1$           | $0.8086(0.8078) \pm 0.0094$ |


Table IV. 1D marginalized posteriors of measurements quantifying the two cosmological tensions, fitting to baseline+DES Y1.


| Model                  | $H_0 [\mathrm{km/s/Mpc}]$ | $S_8$                       |
|------------------------|---------------------------|-----------------------------|
| $\Lambda \mathrm{CDM}$ | $68.76(68.63) \pm 0.36$   | $0.8013(0.8055) \pm 0.0087$ |
| DA EDE                 | $71.08(71.06)\pm0.85$     | $0.8058(0.8075) \pm 0.0089$ |
| $N_{ m eff}$           | $70.50(70.86) \pm 0.78$   | $0.8102(0.8106) \pm 0.0096$ |


Table VI. 1D marginalized posteriors of measurements quantifying the two cosmological tensions, fitting to  $base-line+H_0+DES$ .

#### Baseline + DES


#### Baseline + DES + SH0ES







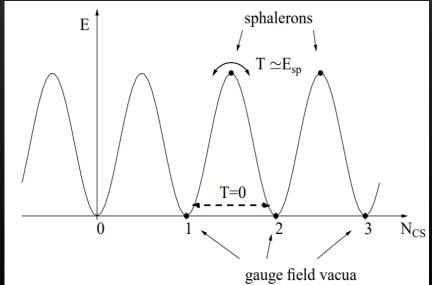
## Going to higher redshifts



Data has sensitivity when  $\frac{\Delta C_{el}^{XX}}{\sigma_{CV}} > 1$ 

Differences in predictions of the theory at larger  $z_c$  are not resolvable

Thermal friction asymptotes to an extra-radiation solution


Berghaus, Karwal 2022

## **Dissipative Axion**

$$\frac{\partial L}{\partial \phi} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} = 0$$

• Couple scalar field to light degrees of freedom  $L_{\rm int} = -\phi_{\frac{\alpha}{16\pi f}} \tilde{G} G$ 

$$\ddot{\phi} + 3H\dot{\phi} + V' = -\left\langle \frac{\alpha}{16\pi f} \tilde{G}G \right\rangle_{\text{non-eq}} (\phi)$$

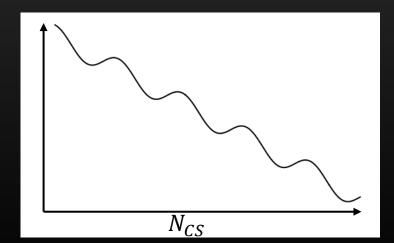


$$\left\langle \frac{\alpha}{16\pi f} \tilde{G} G \right\rangle_{\text{non-eq}} (\phi) \approx m_{\chi}^{2} \phi + \Upsilon \dot{\phi} + O(\ddot{\phi})$$

Not allowed by symmetry

05/09/2022 Pheno 2022 Kim V. Berghaus, YITP 24

## **Dissipative Axion**


$$\partial_u K^u = \frac{\alpha}{16\pi f} \tilde{G}G$$

$$\frac{\partial L}{\partial \phi} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} = 0$$

• Couple scalar field to light degrees of freedom  $L_{
m int} = -\phi rac{lpha}{16\pi f} \tilde{G}G = \dot{\phi} K^0$ 

 $\sim \Delta N_{CS}$ 

$$\ddot{\phi}+3H\dot{\phi}\ +V'=-\left\langle rac{dK^0}{dt}
ight
angle _{ ext{non-eq}}$$
 ( $\dot{\phi}$ )

