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Outline
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Echo counter-image: what does it look like?
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SourceEarth

o Images produced at different locations are stacked



SourceEarth

o Images produced at different locations are stacked
o Look back in time to the sources earlier stages
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Supernova Remnants as radio sources

o Synchrotron radiation 
from shocked e-.

3-color image of the W28 supernova remnant seen in Very 
Large Array (VLA) and Southern Galactic Plane Survey. 
NRAO/AUI and Brogan et al. 2006.
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Supernova Remnants as radio sources

o Synchrotron radiation 
from shocked e-.

o Brighter in the past.

o Age ~ 104 years.

o Luminosity history 
can be modelled.

3-color image of the W28 supernova remnant seen in Very 
Large Array (VLA) and Southern Galactic Plane Survey. 
NRAO/AUI and Brogan et al. 2006.



Modeling of SNR luminosity history
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Projected limits & uncertainties
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Telescopes: FAST, SKA-I, CHIME…
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Projected limits & compounded uncertainties
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Projected limits & compounded uncertainties
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Thank you!
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Comparison with observations
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Measured radio surface brightness to 
diameter relation for SNRs and simulations.
Pavlović, Urošević, Arbutina 2018.



Supernova Remnant Dynamics

o Ejecta dominated phase 
~ 300 yr.

o Sedov-Taylor phase     
~ 104 yr.

o Radiative phase           
~ 105 yr.

o Terminal phase.
One of the published photograph of the Trinity atomic 
bomb tests that allowed British physicist G. I. Taylor to 
estimate the explosion energy.

Sedov-Taylor solution:



SNR Brightness evolution
o Synchrotron radiation flux (isotropic):

for an electron distribution:

o Electron distribution index     can be 
measured from radio spectra.

o Total electron energy           and 
magnetic field evolution must also be 
modelled.Measured radio surface brightness to 

diameter relation for SNRs and simulations.
Pavlović, Urošević, Arbutina 2018.



SNR modelling: electrons
oElectron spectral index    :

o Uncertainty can arise from a nonlinear synchrotron spectrum, 
or different portions of the SNR having different.

o e.g. for our best candidate SNR W50 (SNR G039.7- 02.0):

oElectron energy evolution:
o Classical model [1]: electrons produced (ionized) at the shock 

front but lose energy in the expanding nebula:

o Alternative model: total electron energy is conserved:

[1] Shklovskii 1960



SNR modelling: Magnetic field
oMagnetic field evolution:

o Classical model: compression of interstellar magnetic field, 
flux is conserved:

o Magnetic field amplification (MFA) simulations:

oMFA onset time:
o Core-collapse supernovae have dense circumstellar medium, 

which interacts with shock front very early on.
o Simulations (spherical SN [1], planar shock wave [2]) 

suggests

[1] Shklovskii 1960


