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« Axion echo via stimulated decay
« Geometry of the axion echo

° Supernova remnants as sources
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Signal

Axions act like a mirror for radio sources
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Echo counter-image: what does it look like?
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« Axion echo via stimulated decay
« Geometry of the axion echo

° Supernova remnants as sources
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Geometry of the axion echo
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o Images produced at different locations are stacked
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o Images produced at different locations are stacked
o Look back in time to the sources earlier stages
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Supernova Remnants as radio sources

o Synchrotron radiation
from shocked e".

t;‘

3-color image of the W28 supernova remnant seen in Very
Large Array (VLA) and Southern Galactic Plane Survey.
NRAO/AUI and Brogan et al. 2006.
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o Synchrotron radiation
from shocked e".

o Brighter in the past.

3-color image of the W28 supernova remnant seen in Very
Large Array (VLA) and Southern Galactic Plane Survey.
NRAO/AUI and Brogan et al. 2006.
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Supernova Remnants as radio sources

o Synchrotron radiation
from shocked e".

o Brighter in the past.

o Age ~ 104 years.

¥ L o Luminosity history
can be modelled.

3-color image of the W28 supernova remnant seen in Very
Large Array (VLA) and Southern Galactic Plane Survey.
NRAO/AUI and Brogan et al. 2006.



Modeling of SNR luminosity history

1. Ejecta dominated
expansion ‘
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Modeling of SNR luminosity history

1. Ejecta dominated 2. Adiabatic
expansion ‘ expansion
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Modeling of SNR luminosity history

1. Ejecta dominated 2. Adiabatic 3. Radiative
expansion ‘ expansion expansion
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Projected limits & uncertainties
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Telescopes: FAST, SKA-I, CHIME...

=== CHORD
== SKAI
Haloscopes m— FAST

Five-hundred-meter Aperture Sensitivity for W50 SNR
Spherical Telescope (FAST)

Xinhua



Projected limits & compounded uncertainties
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Projected limits & compounded uncertainties
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Comparison with observations
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Measured radio surface brightness to
diameter relation for SNRs and simulations.
Pavlovié, UroSevié¢, Arbutina 2018.



Supernova Remnant Dynamics R — ¢

o Ejecta dominated phase

~ 300 yr.
o Sedov-Taylor phase
~ 104 yr.
o Radiative phase
~10° yr.
0.025 SEC. 100 METERS . .
N | ' o Terminal phase.
One of the published photograph of the Trinity atomic
bomb tests that allowed British physicist G. |. Taylor to
estimate the explosion energy. 1/5
N 2/5
Sedov-Taylor solution: R — ffront - t

PISM



SNR Brightness evolution > — D

o Synchrotron radiation flux (isotropic):

A NGCs 4449, 1569,

. 4214, 2366
A N4449-1 ;';\AAE ﬁ _E
A e Ssyn ~ VK. B2 v 2
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A\
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for an electron distribution:

An
— VK, EP
AE

o Electron distribution index p can be
measured from radio spectra.

o Total electron energy V' /(. and
magnetic field evolution must also be

Measured radio surface brightness to modelled.
diameter relation for SNRs and simulations.
Pavlovié, UroSevi¢, Arbutina 2018.




SNR modelling: electrons

o Electron spectral index p:

o Uncertainty can arise from a nonlinear synchrotron spectrum,
or different portions of the SNR having different.

o e.g. for our best candidate SNR W50 (SNR G039.7- 02.0):
P = 2.4 +0.2

o Electron energy evolution:

o Classical model [1]: electrons produced (ionized) at the shock
front but lose energy in the expanding nebula:

VK, ~ RP

o Alternative model: total electron energy is conserved:

V K, ~ const.

[1] Shklovskii 1960



SNR modelling: Magnetic field

o Magnetic field evolution:

o Classical model: compression of interstellar magnetic field,
flux is conserved: _
B~ R’

o Magnetic field amplification (MFA) simulations:

13’\’U5?3'\/}%_L5N225

o MFA onset time:
o Core-collapse supernovae have dense circumstellar medium,
which interacts with shock front very early on.

o Simulations (spherical SN [1], planar shock wave [2])
suggests

tvra < 100 VT

[1] Shklovskii 1960



