
Quantum analysis of the minimal potentially realistic SO(10) model

Katerina Jarkovska

Research group: ¹Jarkovska, ¹Malinsky, ²Mede, ^{1,3}Susic ¹Institute of Particle and Nuclear Physics, Charles University ²Jozef Stefan Institute, Ljubljana ³Department of Physics, University of Basel

10.05.2022

SO(10)

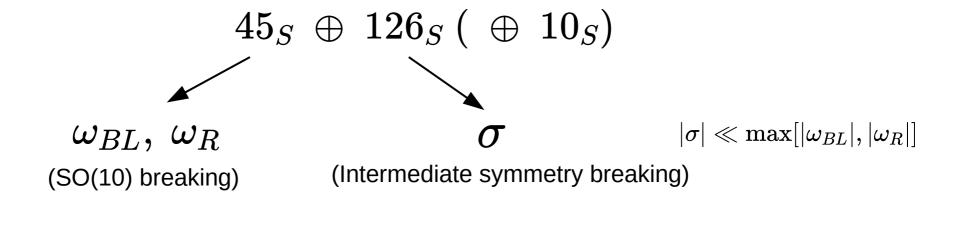
(The minimal renormalizable non-SUSY)

 All fermion fields from one generation + right-handed neutrino in 16_□.

$$16_F = L_L \oplus \overline{d}_L \oplus Q_L \oplus \overline{u}_L \oplus \overline{e}_L \oplus N_L^c$$

• Gauge fields in $45_{\rm G}$, accommodates SM gauge fields + leptoquarks, diquarks (carry colour & flavour) with masses ~ heavy symmetry breaking scale

$$45_G = G_{\mu}^b \oplus A_{\mu}^a \oplus B_{\mu}, Y_{\mu} \oplus (3, 1, \frac{2}{3}) \oplus (3, 2, -\frac{5}{6})$$


$$\oplus (3, 2, \frac{1}{6}) \oplus (1, 1, 1) + h.c.$$

Mediate proton decay

SO(10)

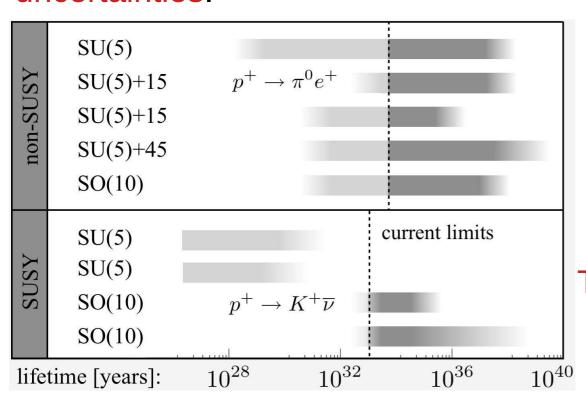
(The minimal renormalizable non-SUSY)

 The minimal realistic scalar sector contains following scalar fields:

|

Neutrino masses – type I (N_R) and type II (triplet in 126_s) seesaw ν $\bar{\nu}$

Inherently quantum model

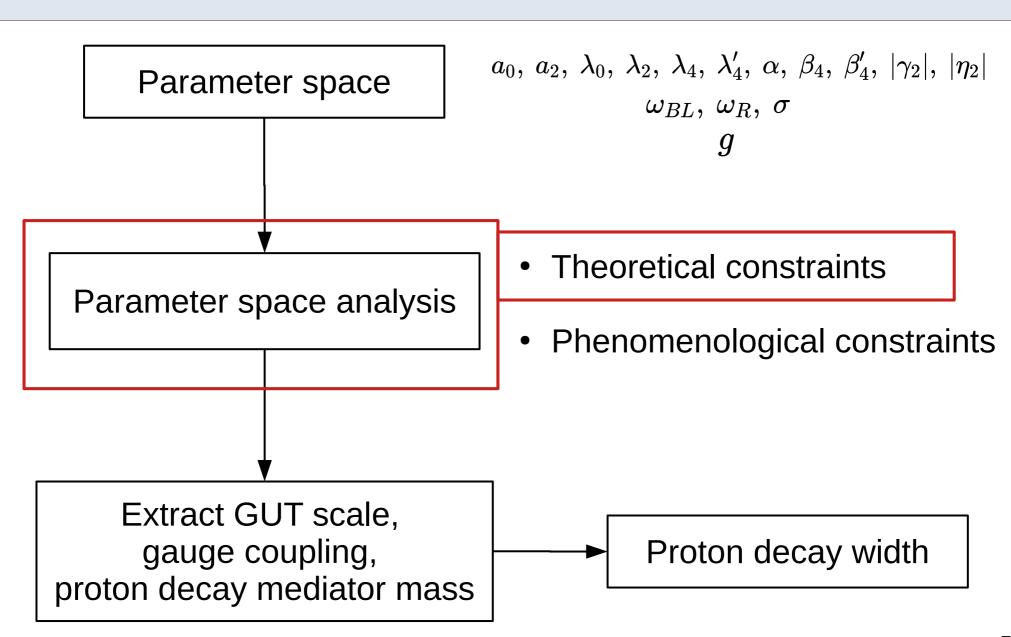

Tree-level scalar spectrum contains tachyonic scalars if not near the flipped $SU(5) \times U(1)'$ breaking chain

$$\begin{aligned} \mathbf{M}_{S}^{2}[(8,1,0)] &= 2\mathbf{a}_{2}(\omega_{BL} - \omega_{R})(\omega_{R} + 2\omega_{BL}), \\ \mathbf{M}_{S}^{2}[(1,3,0)] &= 2\mathbf{a}_{2}(\omega_{R} - \omega_{BL})(2\omega_{R} + \omega_{BL}), \\ M^{2}[(1,1,0)] &= \mathbf{a}_{2}\left(-\frac{45\omega_{BL}^{4}}{3\omega_{BL}^{2} + 2\omega_{R}^{2}} + 13\omega_{BL}^{2} - 2\omega_{BL}\omega_{R} - 2\omega_{R}^{2}\right) \\ &+ O\left(a_{2}^{2}\right) + O\left(\frac{\sigma^{2}}{\omega_{max}^{2}}\right) \end{aligned}$$

If $a_2 \ll 1$, one-loop corrections dominate \longrightarrow pseudo-Goldstone bosons of the broken O(45) global symmetry

Allows BLNV processes

Gauge & scalar leptoquarks lead to baryon and/or lepton number violation. The most prominent BNV process is proton decay. Proton lifetime prediction in the non-SUSY minimal renormalizable SO(10) is robust with respect to the theoretical uncertainties.

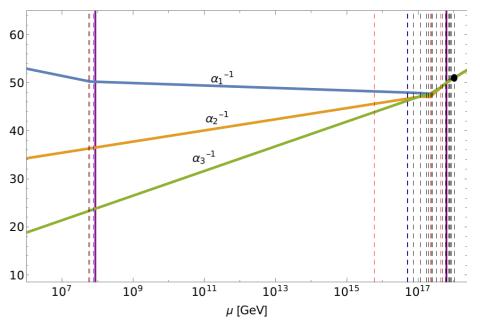


"Precise" proton decay prediction

Thorough theory investigation

Proton lifetime calculation

Tachyonicity


- Non-tachyonicity of the mass spectrum is essential requirement
- Accidentally light pseudo-Goldstone bosons (need to go beyond tree-level, inherently quantum model)

Complete calculation of full oneloop effective scalar mass corrections

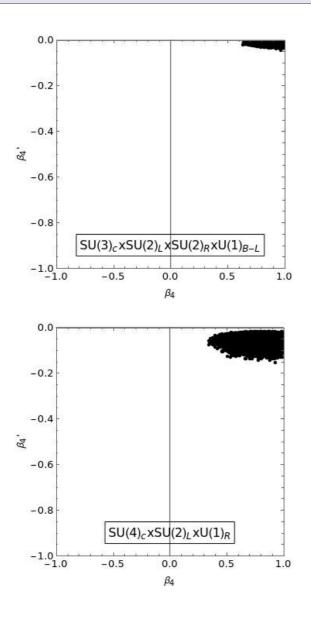
Gauge coupling unification

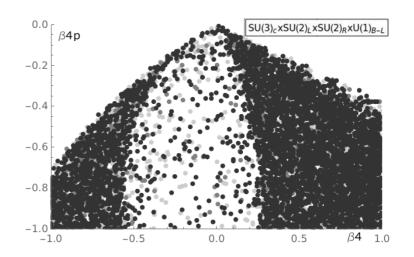
- All three gauge couplings have to unify when run to the high energy scales
- Multi-stage symmetry breaking

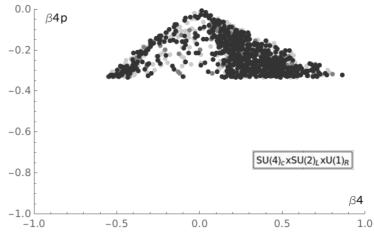
Perturbativity

- Global mass perturbativity the relative size of the one-loop mass corrections is restricted with respect to the tree-level masses ← one-loop corrections to the effective scalar masses
- Stability under RG running one-loop effective scalar masses possess residual renormalization scale dependence which is controlled by RG running restrictions

Complete system of one-loop beta functions of all dimensionless couplings

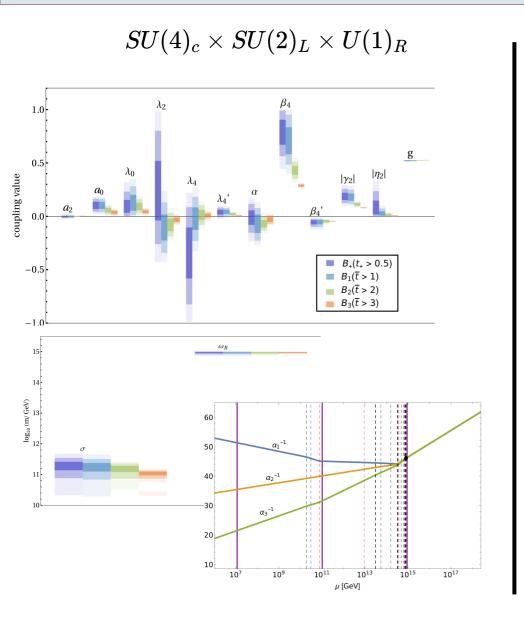

Perturbativity

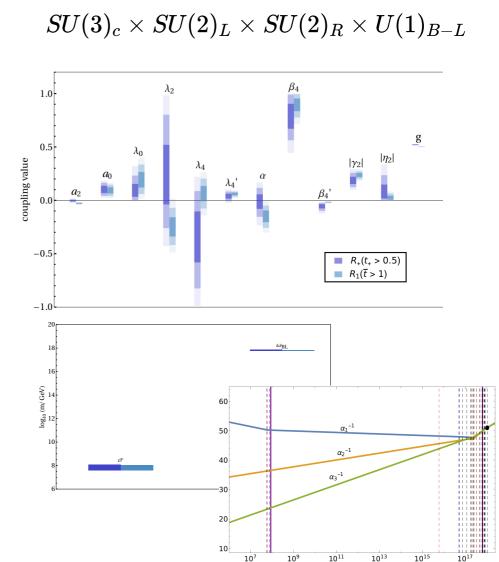

 Vacuum position stability – one-loop vacuum is not too far from the tree-level vacuum in the VEV space


$$\tau = P(\sigma, \omega_{BL}, \omega_R, \lambda) + Q(\lambda) \frac{\omega_{BL}\omega_R(\omega_{BL} + \omega_R)}{|\sigma|^2}$$

There are only four distinct possible breaking chains

- 1) One step breaking
- 2) (Flipped) SU(5) inter. stage
- 3) $SU(4)_c xSU(2)_l xU(1)_R$ inter. stage
- 4) $SU(3)_c xSU(2)_L xSU(2)_R xU(1)_{B-L}$ inter. stage





[S.Bertolini, L. Di Luzio, M. Malinsky, Phys.Rev.D 87 (2013) 8, 085020]

[H. Kolesova, M. Malinsky, : Phys.Rev.D 90 (2014) 11, 115001]

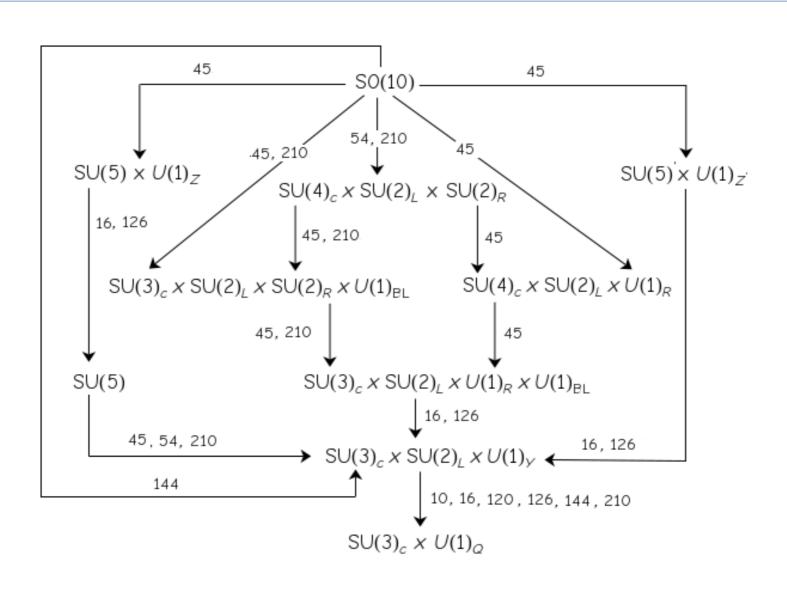
Parameter space analysis Results

 μ [GeV]

Summary & Outlook

Minimal renormalizable non-SUSY **SO(10)**:

- Gauge bosons in 45_s , one-generation of fermions (+ N_R) in 16_F , scalars in 45_s , 126_s (+ 10_s)
- Inherently quantum model
- Proton lifetime estimate is robust with respect to the theoretical uncertainties


The proton lifetime calculation has to involve thorough parameter space analysis involving constraints:

- Tachyonicity (one-loop effective masses)
- Gauge coupling unification
- Improved Perturbativity

Phenomenological constraints still need to be implemented (see-saw scale constraints, Yukawa sector). Gauge coupling unification has to be considered on two-loops level.

Additional slides

SO(10) breaking chanes (non-SUSY minimal renormalizable)

Theoretical uncertainties

$$\Gamma(p \to \pi^0 e^+) \propto |\langle \text{hadr.} \rangle|^2 \times \frac{\alpha_G^2}{M_X^4} \times$$

flavour \times eff. operator running

Irreducible:

- Hadronic matric elements
- Planck scale physics (dim 5 operators)

$\frac{c}{M_{Pl}} F^{\mu\nu} \Phi F_{\mu\nu} \to c \frac{M_{GUT}}{M_{Pl}} F^{\mu\nu} F_{\mu\nu}$ SO(10)

Reducible:

Finite order in perturbation theory

$$\frac{c}{M_{Pl}}f_if_jH\Phi \to c\frac{M_{GUT}}{M_{Pl}}f_if_jH$$
 Suppressed in SO(10)

[Kolesova, Malinsky: Phys.Rev.D 99 (2019)]

[Kolesova, Malinsky, Mede: AIP Conf. Proc. 1743 (2016)]