Finding Evidence of Inflation and Galactic Magnetic Fields with CMB Surveys

Sayan Mandal

Physics and Astronomy Department, Stony Brook University

Based on: Phys. Rev. D 105, 063537 (SM, Neelima Sehgal, Toshiya Namikawa)

9th May, 2022

・ロト ・回ト ・ヨト

Introduction

• Magnetic fields are detected at different scales in the universe.

・ロト ・日下・ ・ ヨト・

Introduction

- Magnetic fields are detected at different scales in the universe.
- In particular, the origin of $\mu {\rm G}$ fields in galaxies is unknown.

Image: A math the second se

- Magnetic fields are detected at different scales in the universe.
- In particular, the origin of $\mu {\rm G}$ fields in galaxies is unknown.
- The origin can be:
 - during inflation
 - **2** during early universe phase transitions
 - I from amplification of fields by galactic dynamos.

・ロト ・日ト ・ヨト

- Magnetic fields are detected at different scales in the universe.
- In particular, the origin of $\mu {\rm G}$ fields in galaxies is unknown.
- The origin can be:
 - during inflation
 - 2 during early universe phase transitions
 - I from amplification of fields by galactic dynamos.
- Scenarios '1' and '2' generate *primordial magnetic fields* (PMFs) nG scale PMFs at Mpc scales are adiabatically compressed to μ G scale fields in galaxies.

- Magnetic fields are detected at different scales in the universe.
- In particular, the origin of $\mu {\rm G}$ fields in galaxies is unknown.
- The origin can be:
 - during inflation
 - 2 during early universe phase transitions
 - I from amplification of fields by galactic dynamos.
- Scenarios '1' and '2' generate *primordial magnetic fields* (PMFs) nG scale PMFs at Mpc scales are adiabatically compressed to μ G scale fields in galaxies.
- PMFs are an attractive scenario to explain the uniform distribution of magnetic fields in voids.

• PMFs arise from vacuum fluctuations during inflation.

イロト イヨト イヨト

- PMFs arise from vacuum fluctuations during inflation.
- Inflationary PMFs have very large correlation lengths.

・ロト ・日下・ ・ ヨト

- PMFs arise from vacuum fluctuations during inflation.
- Inflationary PMFs have very large correlation lengths.
- Involves the breaking of conformal symmetry typically couplings like $R^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$ or $f(\phi)F_{\mu\nu}F^{\mu\nu}$.

メロト メポト メヨト メヨト

- PMFs arise from vacuum fluctuations during inflation.
- Inflationary PMFs have very large correlation lengths.
- Involves the breaking of conformal symmetry typically couplings like $R^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$ or $f(\phi)F_{\mu\nu}F^{\mu\nu}$.
- Scale invariant (or nearly) PMF power spectrum.

• An out of equilibrium, first-order transition is typically needed.

・ロト ・日下・ ・ ヨト

- An out of equilibrium, first-order transition is typically needed.
- Violent bubble nucleation and collisions generate significant turbulence.

・ロト ・日下・ ・ ヨト

- An out of equilibrium, first-order transition is typically needed.
- Violent bubble nucleation and collisions generate significant turbulence.
- Two main phase transitions are:

 - **2** QCD "Phase Transition" $(T \sim 150 \,\mathrm{MeV})$

- An out of equilibrium, first-order transition is typically needed.
- Violent bubble nucleation and collisions generate significant turbulence.
- Two main phase transitions are:
 - Electroweak Phase Transition $(T \sim 100 \,\text{GeV})$
 - **2** QCD "Phase Transition" $(T \sim 150 \,\mathrm{MeV})$
- In the Standard Model, these are not first-order; some beyond-SM extensions can make them so.

- An out of equilibrium, first-order transition is typically needed.
- Violent bubble nucleation and collisions generate significant turbulence.
- Two main phase transitions are:
 - Electroweak Phase Transition $(T \sim 100 \,\text{GeV})$
 - **2** QCD "Phase Transition" $(T \sim 150 \,\mathrm{MeV})$
- In the Standard Model, these are *not* **first-order**; some beyond-SM extensions can make them so.
- No evidence for any of these models so far.

• Scale invariant PMFs ($B_{\rm SI}$) above 0.1 nG on Mpc scales are adiabatically compressed to μ G fields in galaxies.

・ロト ・日下・ ・ ヨト・

- Scale invariant PMFs ($B_{\rm SI}$) above 0.1 nG on Mpc scales are adiabatically compressed to μ G fields in galaxies.
- This is because of magnetic flux conservation:

・ロト ・日ト ・ヨト

- Scale invariant PMFs ($B_{\rm SI}$) above 0.1 nG on Mpc scales are adiabatically compressed to μ G fields in galaxies.
- This is because of magnetic flux conservation:

• Detecting $B_{\rm SI} > 0.1 \,\mathrm{nG}$ will be evidence of inflationary PMFs.

- Scale invariant PMFs ($B_{\rm SI}$) above 0.1 nG on Mpc scales are adiabatically compressed to μ G fields in galaxies.
- This is because of magnetic flux conservation:

- Detecting $B_{\rm SI} > 0.1 \,\mathrm{nG}$ will be evidence of inflationary PMFs.
- More importantly, it will be a compelling evidence of inflation!!!

- Scale invariant PMFs ($B_{\rm SI}$) above 0.1 nG on Mpc scales are adiabatically compressed to μ G fields in galaxies.
- This is because of magnetic flux conservation:

- Detecting $B_{\rm SI} > 0.1 \,\mathrm{nG}$ will be evidence of inflationary PMFs.
- More importantly, it will be a compelling evidence of inflation!!!
- If $B_{\rm SI}$ is constrained below 0.1 nG, inflation isn't the primary source of galactic fields.

• PMFs induce T, E, and B anisotropies in the CMB through perturbations in the spacetime metric and Lorentz force in the primordial plasma.

メロト メロト メヨト メ

- PMFs induce T, E, and B anisotropies in the CMB through perturbations in the spacetime metric and Lorentz force in the primordial plasma.
- The CMB spectra scale as B^4 .

・ロト ・回ト ・ヨト

- PMFs induce T, E, and B anisotropies in the CMB through perturbations in the spacetime metric and Lorentz force in the primordial plasma.
- The CMB spectra scale as B^4 .
- PMFs just after recombination also rotate the plane of polarization of CMB *anisotropic birefringence* or Faraday rotation.

- PMFs induce T, E, and B anisotropies in the CMB through perturbations in the spacetime metric and Lorentz force in the primordial plasma.
- The CMB spectra scale as B^4 .
- PMFs just after recombination also rotate the plane of polarization of CMB *anisotropic birefringence* or Faraday rotation.
- This scales as B^2 .

- PMFs induce T, E, and B anisotropies in the CMB through perturbations in the spacetime metric and Lorentz force in the primordial plasma.
- The CMB spectra scale as B^4 .
- PMFs just after recombination also rotate the plane of polarization of CMB *anisotropic birefringence* or Faraday rotation.
- This scales as B^2 .
- Birefringence can thus provide a tighter bound on the PMF strength from future surveys.

Realistic PMF Spectrum

• PMF constitute a Gaussian random field in three dimensions – characterized by the power spectrum $P_B(k)$.

メロト メロト メヨト メヨ

Realistic PMF Spectrum

• PMF constitute a Gaussian random field in three dimensions – characterized by the power spectrum $P_B(k)$.

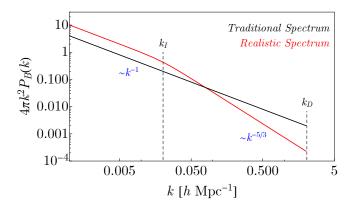
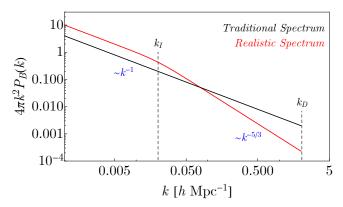


Image: A math black

Realistic PMF Spectrum

• PMF constitute a Gaussian random field in three dimensions – characterized by the power spectrum $P_B(k)$.



• We use this to theoretically calculate the anisotropic birefringence.

• From the rotation angle $\alpha(\hat{\mathbf{n}})$, we get a power spectrum, $\langle \alpha(\hat{\mathbf{n}})\alpha(\hat{\mathbf{n}}') \rangle \equiv \sum_{l} (2l+1)C_{l}^{\alpha\alpha} P_{l}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}')/4\pi.$

- From the rotation angle $\alpha(\hat{\mathbf{n}})$, we get a power spectrum, $\langle \alpha(\hat{\mathbf{n}})\alpha(\hat{\mathbf{n}}') \rangle \equiv \sum_{l} (2l+1)C_{l}^{\alpha\alpha} P_{l}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}')/4\pi.$
- The corresponding amplitude is $A_{\alpha} \equiv l(l+1)C_l^{\alpha\alpha}/2\pi$.

- From the rotation angle $\alpha(\hat{\mathbf{n}})$, we get a power spectrum, $\langle \alpha(\hat{\mathbf{n}})\alpha(\hat{\mathbf{n}}') \rangle \equiv \sum_{l} (2l+1)C_{l}^{\alpha\alpha} P_{l}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}')/4\pi.$
- The corresponding amplitude is $A_{\alpha} \equiv l(l+1)C_l^{\alpha\alpha}/2\pi$.
- The error bars on A_{α} are computed for future CMB experiments.

- From the rotation angle $\alpha(\hat{\mathbf{n}})$, we get a power spectrum, $\langle \alpha(\hat{\mathbf{n}})\alpha(\hat{\mathbf{n}}') \rangle \equiv \sum_{l} (2l+1)C_{l}^{\alpha\alpha} P_{l}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}')/4\pi.$
- The corresponding amplitude is $A_{\alpha} \equiv l(l+1)C_l^{\alpha\alpha}/2\pi$.
- The error bars on A_{α} are computed for future CMB experiments.

SO	CMB-S4	CMB-HD
$\sigma(A_{\alpha}) \; (\mathrm{deg}^2) \; \mid \; 2.4 \times 10^{-4}$	6.5×10^{-6}	$1.4 imes 10^{-6}$

< ロ > < 回 > < 回 > < 回 > < 回 >

• We get the following constraints on $\sigma(A_{\alpha})$ and consequently on B_{SI} :

	SO	CMB-S4	CMB-HD
$\sigma(A_{\alpha}) \; (\mathrm{deg}^2)$	2.4×10^{-4}	6.5×10^{-6}	1.4×10^{-6}
$\sigma(B_{\rm SI}) \ ({\rm nG})$	0.47	0.08	0.036
SNR for $B_{\rm SI} = 0.1 \text{ nG}$	0.2	1.25	3

メロト メロト メヨト メヨ

• We get the following constraints on $\sigma(A_{\alpha})$ and consequently on B_{SI} :

	SO	CMB-S4	CMB-HD
$ \begin{array}{c} \sigma(A_{\alpha}) \; (\mathrm{deg}^2) \\ \sigma(B_{\mathrm{SI}}) \; (\mathrm{nG}) \end{array} $	$\begin{array}{c} 2.4\times10^{-4}\\ 0.47\end{array}$	$\begin{array}{c} 6.5\times10^{-6}\\ 0.08\end{array}$	1.4×10^{-6} 0.036
SNR for $B_{\rm SI} = 0.1$ nG	0.2	1.25	3

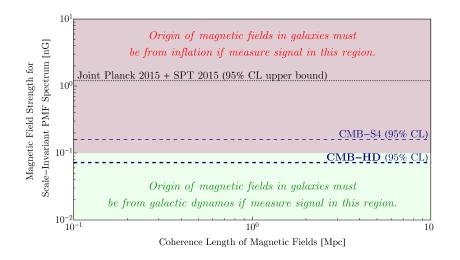
• Current best constraints on $\sigma(B_{\rm SI})$ comes from Planck and SPT analysis of CMB spectra¹ – $\sigma(B_{\rm SI}) = 1.2 \,\mathrm{nG}$.

= nan

• We get the following constraints on $\sigma(A_{\alpha})$ and consequently on $B_{\rm SI}$:

	SO	CMB-S4	CMB-HD
$\sigma(A_{lpha}) \; (\mathrm{deg}^2)$		6.5×10^{-6}	
$\sigma(B_{\rm SI}) \ ({\rm nG})$	0.47	0.08	0.036
SNR for $B_{\rm SI} = 0.1$ nG	0.2	1.25	3

- Current best constraints on $\sigma(B_{\rm SI})$ comes from Planck and SPT analysis of CMB spectra¹ $\sigma(B_{\rm SI}) = 1.2 \,\mathrm{nG}$.
- CMB-HD will improve the bound on A_{α} by four orders of magnitude giving tightest constraints on PMFs.



• MFs in our galaxy lead to CMB Birefringence of $A_{\alpha} \sim 10^{-5} \text{ deg}^2$, similar to $\mathcal{O}(0.1 \text{ nG})$ PMFs.

メロト メロト メヨト メヨト

- MFs in our galaxy lead to CMB Birefringence of $A_{\alpha} \sim 10^{-5} \text{ deg}^2$, similar to $\mathcal{O}(0.1 \text{ nG})$ PMFs.
- We thus need to subtract the birefringence caused by the MW.

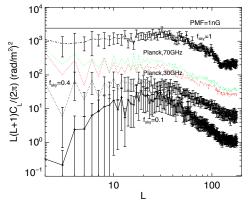
メロト メロト メヨト メヨ

- MFs in our galaxy lead to CMB Birefringence of $A_{\alpha} \sim 10^{-5} \text{ deg}^2$, similar to $\mathcal{O}(0.1 \text{ nG})$ PMFs.
- We thus need to subtract the birefringence caused by the MW.
- Independent MW-induced birefringence obtained from the $\alpha(\hat{\mathbf{n}})$ of 40,000 extragalactic radio sources near the MW (NVSS Catalog).

< ロ > < 回 > < 回 > < 回 > < 回 >

- MFs in our galaxy lead to CMB Birefringence of $A_{\alpha} \sim 10^{-5} \text{ deg}^2$, similar to $\mathcal{O}(0.1 \text{ nG})$ PMFs.
- We thus need to subtract the birefringence caused by the MW.
- Independent MW-induced birefringence obtained from the $\alpha(\hat{\mathbf{n}})$ of 40,000 extragalactic radio sources near the MW (NVSS Catalog).
- $\alpha(\hat{\mathbf{n}})$ is measured at multiple frequencies, giving a precise map of the MW birefringence.

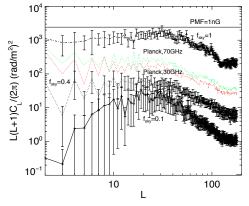
Milky Way RM Spectra



(De et al., Phys. Rev. D 88.6.)

• We can estimate the galactic MF strength and the associated error for the cleanest 40% of the sky.

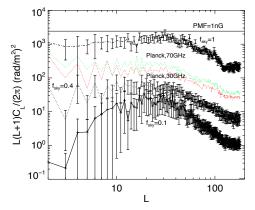
Milky Way RM Spectra



(De et al., Phys. Rev. D 88.6.)

- We can estimate the galactic MF strength and the associated error for the cleanest 40% of the sky.
- We infer the galactic MF to have $\sigma_{B_{\rm SI,G}} \approx 0.006 \, {\rm nG}$.

Milky Way RM Spectra



(De et al., Phys. Rev. D 88.6.)

- We can estimate the galactic MF strength and the associated error for the cleanest 40% of the sky.
- We infer the galactic MF to have $\sigma_{B_{\rm SI,G}} \approx 0.006 \, {\rm nG}$.
- The MW birefringence can thus be subtracted from the CMB measurement!!

	SO	CMB-S4	CMB-HD
$\sigma(B_{\rm SI})$ (nG)	0.47	0.08	0.036

- The current 95% CL upper bound on $B_{\rm SI}$ is $1.2\,{\rm nG}$ comes from the Planck TT, EE, and TE, and SPT BB data.
- A_{α} measurements from CMB-S4 and CMB-HD will tighten it to 0.16 nG and 0.072 nG respectively.
- The CMB-HD bound is below the 0.1 nG threshold that distinguishes between purely inflationary and dynamo origins of galactic MFs.
- **Detection** of $B_{\rm SI} < 0.1 \,\mathrm{nG}$ will point to a dynamo origin of galactic MFs.
- **Detection** of $B_{\rm SI} > 0.1 \,\mathrm{nG}$ will be a compelling evidence for inflation!
- CMB-HD is capable of detecting inflationary PMFs at 3σ significance.

三日 のへの

Thank You!

11 9 9 9 P

・ロト ・回ト ・ヨト ・ヨト

Supplementary Slides

= 990

・ロト ・回ト ・ヨト ・ヨト

• 5σ discrepancy between local and high redshift measurement of H_0 .

メロト メロト メヨト メヨ

- 5σ discrepancy between local and high redshift measurement of H_0 .
- Supernova measurements give $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$, while CMB measurements lead to $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$.

- 5σ discrepancy between local and high redshift measurement of H_0 .
- Supernova measurements give $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$, while CMB measurements lead to $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$.
- Pre-recombination PMFs lead to baryon clumping on kpc scales².

・ロト ・回 ト ・ ヨト

 $^{^2 {\}rm Jedamzik}$ & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.

- 5σ discrepancy between local and high redshift measurement of H_0 .
- Supernova measurements give $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$, while CMB measurements lead to $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$.
- Pre-recombination PMFs lead to baryon clumping on kpc scales².
- These inhomogeneties cause recombination to happen earlier, reducing the sound horizon and increasing H_0^{-3} .

²Jedamzik & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.

³Jedamzik & Pogosian, arXiv:2004.09487,Phys. Rev. Lett. 125.18 \times < \equiv

- 5σ discrepancy between local and high redshift measurement of H_0 .
- Supernova measurements give $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$, while CMB measurements lead to $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$.
- Pre-recombination PMFs lead to baryon clumping on kpc scales².
- These inhomogeneties cause recombination to happen earlier, reducing the sound horizon and increasing H_0^{-3} .
- A $\sim 0.1\,\mathrm{nG}$ PMFs before recombination is enough to resolve the Hubble tension.

²Jedamzik & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.

³Jedamzik & Pogosian, arXiv:2004.09487,Phys. Rev. Lett. 125.18 \times < \equiv \times <

Modeling Inflationary PMFs

- The comoving magnetic field **B** is a Gaussian random field in three dimensions.
- Information about the energy of PMFs is encapsulated in the power spectrum $P_B(k)$; magnetic helicity does not affect birefringence.
- Traditionally written as

$$P_B(k) = A_B k^{n_B}, \quad k \le k_D \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

for some damping scale k_D ; For inflationary PMFs $n_B = -3$

• We set k_D to the Silk damping scale $2 \,\mathrm{Mpc}^{-1}$; PMFs on scales smaller than these have net rotation.

- From the rotation angle $\alpha(\hat{\mathbf{n}})$, we get a power spectrum, $\langle \alpha(\hat{\mathbf{n}})\alpha(\hat{\mathbf{n}}') \rangle \equiv \sum_{l} (2l+1)C_{l}^{\alpha\alpha} P_{l}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}')/4\pi.$
- The amplitude of anisotropic birefringence is

$$A_{\alpha} \equiv \frac{l(l+1)C_l^{\alpha\alpha}}{2\pi} \propto \frac{B^2}{\nu_0^4} \tag{2}$$

for frequency ν_0 of observation.

• For a scale-invariant PMFs, A_{α} is independent of l in the multipole region of interest.

メロト メロト メヨト メヨト

The Birefringence Spectrum (Contd.)

- However, A_{α} is frequency dependent, and CMB surveys observe at two frequencies.
- Since $A_{\alpha} \propto \nu_0^{-4}$, we can construct an *effective frequency* for our theoretical prediction,

$$\frac{1}{\nu_{\rm eff}^4} = \frac{1}{2} \left(\frac{1}{\nu_1^4} + \frac{1}{\nu_2^4} \right). \tag{3}$$

- Equivalent to taking an arithmetic mean of the measurements on the channels assuming equal noise levels.
- For the channels of 90 and 150 GHz, we find $\nu_{\rm eff} = 103.8 \,\rm GHz$.

Experiment	White noise	Beam	$f_{\rm sky}$	Delensing Fraction
SO-SAT CMB-S4 CMH-HD	${3\mu{ m K}'}\over{2\mu{ m K}'} 0.7\mu{ m K}'$	17' 2' 0.4'	$\begin{array}{c} 0.1 \\ 0.5 \\ 0.5 \end{array}$	$0.3 \\ 0.15 \\ 0.1$

The error bars on A_{α} are computed as:

$$\frac{1}{\sigma^2(A_\alpha)} = \sum_l f_{\rm sky} \frac{2l+1}{2} \frac{(C_l^{\alpha\alpha, \rm fid})^2}{(N_l^{\alpha\alpha})^2},\tag{4}$$

where $C_l^{\alpha\alpha,\text{fid}} = 2\pi/l(l+1)$ and $N_l^{\alpha\alpha}$ is the reconstruction noise spectrum.

Multipole ranges of 100 < l < 5000 are used for this calculation.

・ロト ・回ト ・ヨト ・ヨト

Subtracting Milky Way Birefringence (Contd.)

• At our effective frequency $\nu_{\rm eff} = 103.8\,{\rm GHz},$ we have

$$A_{\alpha} = 2.363 \times 10^{-7} \left(\frac{A_{\rm RM}}{1 \, \rm rad/m^2}\right)^2 \, \rm deg^2, \tag{5}$$

where $A_{\text{RM},l}^2 \equiv l(l+1)C_l^{\text{RM}}/2\pi \approx A_{\text{RM}}^2$.

- $\sigma_{A^2_{\mathrm{RM},l}}$ comes from both sample variance and measurement uncertainty.
- For the cleanest 40% of the sky, the galactic contribution is $A_{\text{RM},l}^2 \approx 70 \, l^{-0.17} \, (\text{rad/m}^2)^2$.
- The associated error is $\sigma_{A^2_{\mathrm{RM},l}} \approx 0.7 A^2_{\mathrm{RM},l}$.

Subtracting Milky Way Birefringence (Contd.)

- $A_{\rm RM}$ is related to $B_{\rm SI}$ as $A_{\rm RM} = 68 \,\mathrm{rad}/\mathrm{m}^2 \,(B_{\rm SI}/1 \,\mathrm{nG})$.
- The Galactic $A_{RM} \approx \sqrt{70} \, \text{rad/m}^2 \approx 8 \, \text{rad/m}^2$ gives $B_{\rm SI,G} \approx 0.12 \, \text{nG}$ on Mpc scales.
- SNR for detecting MW-induced $A_{\rm RM}$ is

$$\left(\frac{S}{N}\right)^2 = \sum_l \frac{\left(A_{\rm RM,l}^2\right)^2}{\sigma_{A_{\rm RM,l}^2}^2} \approx 26^2.$$
(6)

- This is likely optimistic we have ignored covariance between the $\sigma_{A_{\rm BM}^2}$.
- Let's be conservative and take SNR = 10 this gives $\sigma_{A_{\rm RM,l}} \approx 0.4 \, {\rm rad/m^2}$, and thus $\sigma_{B_{\rm SI,G}} \approx 0.006 \, {\rm nG}$.