
Probing the nature of electroweak symmetry breaking with Higgs boson pair-production at ATLAS

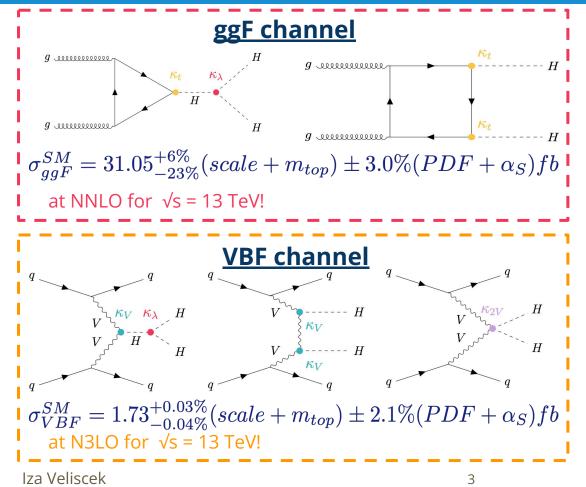
Iza Veliscek On behalf of the ATLAS Collaboration

Phenomenology symposium 2022, 9-11 May 2022

Full Run-2 LHC dataset:

• Integrated luminosity of 126-139 fb⁻¹ of data collected at $\sqrt{s} = 13 \text{ TeV}$

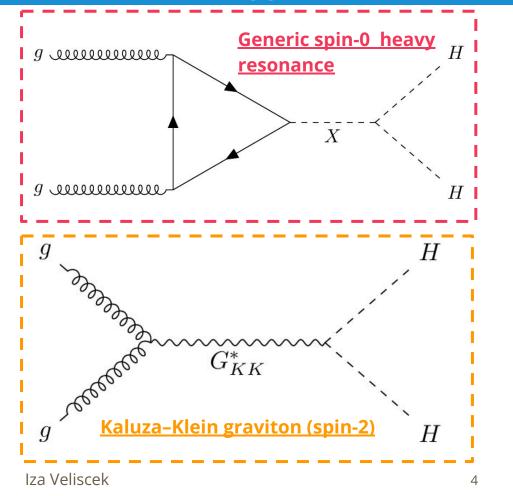
• <u>Di-Higgs results with full Run 2 dataset at the ATLAS Experiment</u>


- Resonant HH→bbbb [CERN-EP-2021-229]
- Resonant and non-resonant $HH \rightarrow bb\tau\tau$ [ATLAS-CONF-2021-030]
- Resonant and non-resonant HH→bbyy [CERN-EP-2021-180]
- Resonant and non-resonant combination [ATLAS-CONF-2021-052]
- HEFT interpretation using HH→bbγγ and HH→bbττ [ATL-PHYS-PUB-2022-019]

• <u>HL-LHC projections with the ATLAS detector</u>

- **HL-LHC prospects for HH** \rightarrow **bb** $\tau\tau$ [ATL-PHYS-PUB-2021-044]
- **HL-LHC prospects for HH**→**bbyy** [ATL-PHYS-PUB-2022-001]
- HL-LHC Prospects for HH (bbγγ + bbττ combination) [ATL-PHYS-PUB-2022-005]

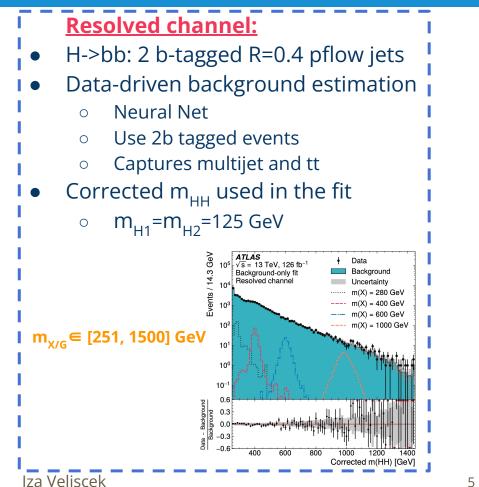
Non-Resonant di-Higgs Production at the LHC

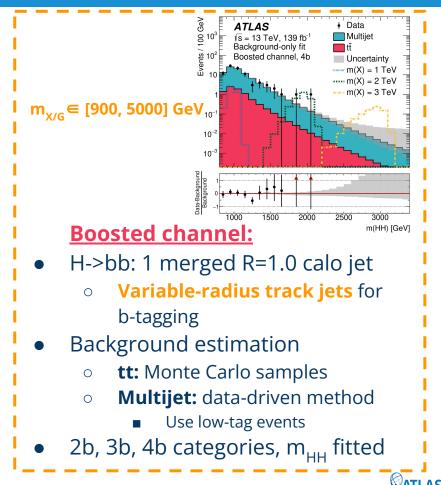

Search for **non-resonant** pair production of Higgs bosons

- Trilinear self-coupling of the Higgs boson (H) $\circ \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}$
- Test the theory of electroweak symmetry breaking
- Very sensitive to anomalous trilinear self-coupling

 $^{\circ}~\kappa_{\lambda} = rac{\lambda_{HHH}^{measured}}{\lambda_{HHH}^{SM}}$

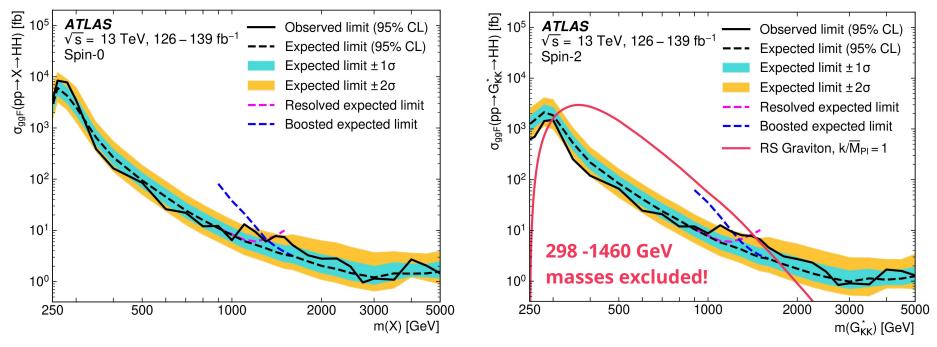
Resonant di-Higgs Production


<u>Search for **resonant** pair production of</u> <u>Higgs bosons</u>

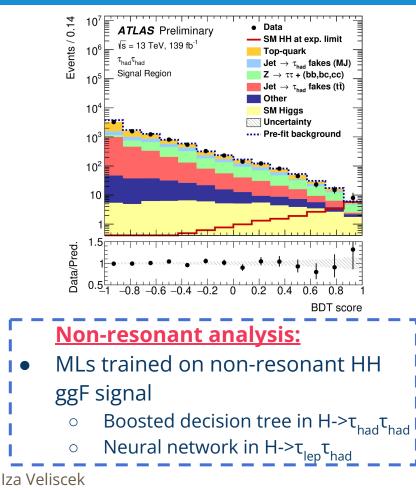

- Representative benchmark models:
 - Generic spin-0 boson
 - Predicted by Higgs-doublet models, e.g. MSSM
 - Spin-2 Kaluza–Klein graviton
 - As in the bulk
 - Randall–Sundrum (RS) model
- Assumptions:
 - Spin hypothesis
 - Generated resonance width
 - Spin-0 boson with a narrow width of 10 GeV
 - Kaluza–Klein graviton width based on model prediction

Resonant HH->bbbb

CERN-EP-2021-22



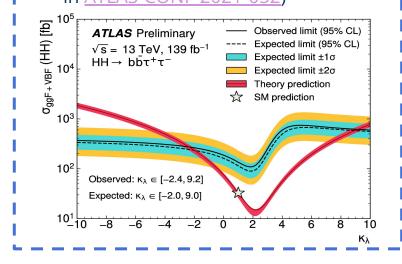
Resonant HH->bbbb

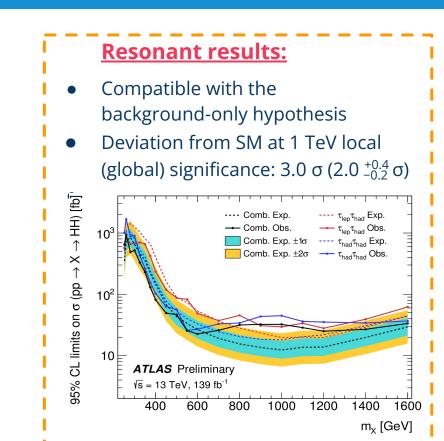

No significant evidence of a signal is observed!

- Powerful at high resonance masses!
 - Improvements in the **boosted channel 3-5 TeV range** covered for the first time
- $m_{X/G} \in [900, 1500]$ GeV resolved and boosted fitted together

HH->bbtt

- H->bb: 2 b-tagged pflow jets
- H->τ_{had}τ_{had} or H->τ_{lep}τ_{had} opposite charge!
- H->τ_{lep}τ_{had} categorized on based the event passing certain triggers
- Dominant tt and Z + heavy flavor
- Fit a machine learning observable

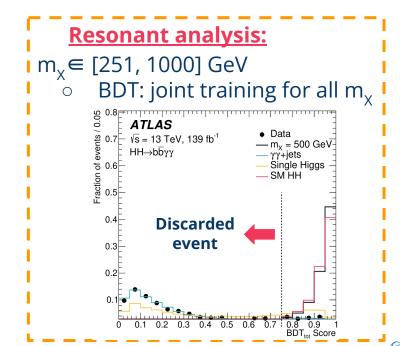

	<u>Resonant analysis:</u>
•	m _x ∈ [251, 1600] GeV
•	Parameterized neural network
i –	 Heavy resonance mass
Î.	parameterized in the training



HH->bbtt

Non-Resonant results:

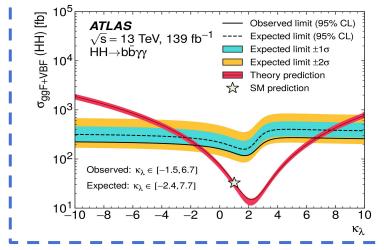
- Observed (expected) upper limits on the cross-section: 4.7 (3.9) times the SM expectation
- *κ*_λ ∈ [-2.4, 9.2] ([-2.0, 9.0]) (published in ATLAS-CONF-2021-052)

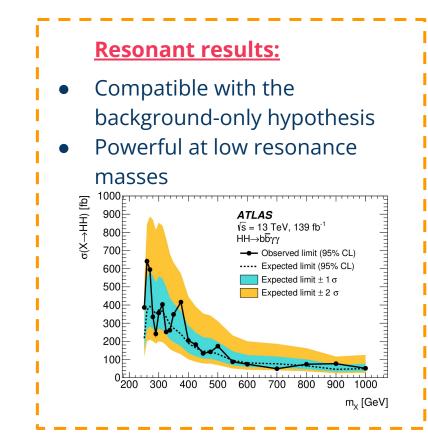


HH->bbyy

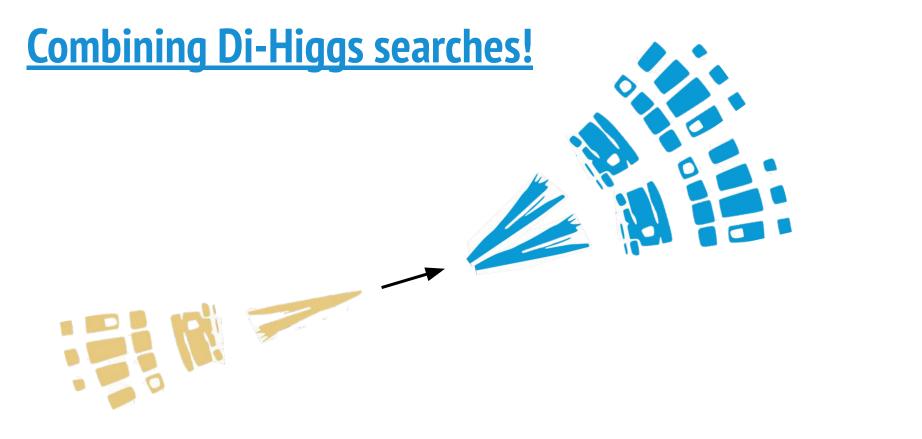
ATLAS

- H->bb: 2 b-tagged pflow jets H-> $\gamma\gamma$: 2 high $p_{\tau}\gamma$ No leptons
- Categories constructed from:

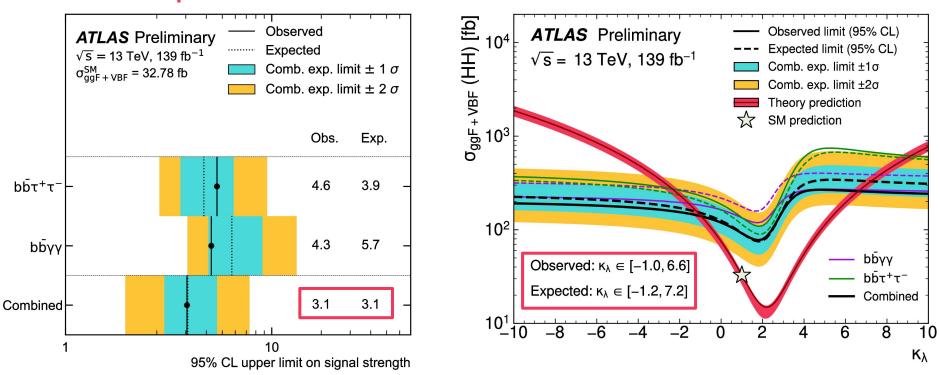

 m^{*}_{bbyy} cuts
 y and jet related kinematics
 missing transverse momentum variables
- Main backgrounds: non-resonant ɣ ɣ , single Higgs decays
- Model signal and background m_{yy} shapes with analytic function
- Categorise on BDT score
- Fit m_{yy}
- Non-resonant analysis: Low and high mass category ○ BDT trained for each



HH->bbyy


Non-Resonant results:

- Observed (expected) upper limits on the cross-section: 4.2
 (5.7) times the SM expectation
- κ_λ ∈ [-1.5, 6.7] ([-2.4, 7.7])



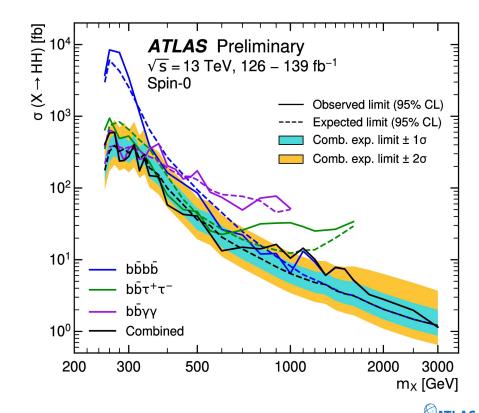
Combination Non-Resonant bbyy and bbtt

Signal strength for non-resonant SM di-Higgs production

Non-resonant di-Higgs production cross-section

Combination bbbb, bbyy and bbtt resonant decay channels

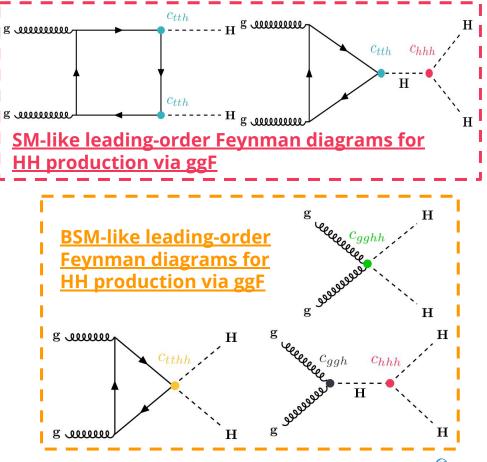
ATLAS-CONF-2021-052

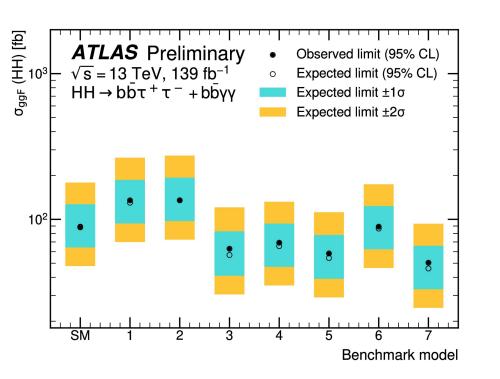

No significant evidence of a signal is observed!

- Low mass **bbyy** dominant
- Mid range bbττ dominant
- High mass **bbbb** dominant

Largest deviation from SM at **1.1 TeV**

• Local (global) significance $3.2 \sigma (2.1 \sigma)$


HEFT interpretation of bbyy and bbtt

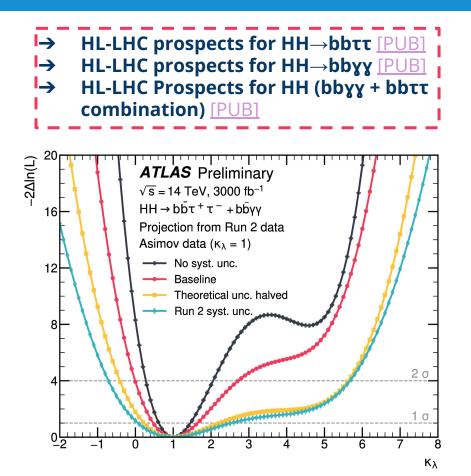

ATL-PHYS-PUB-2022-019

- Higgs Effective Field Theories (HEFT)
- Dominant source of new physics: anomalous H couplings in the electroweak sector
 - Treat Single H and HH couplings separately

The seven HEFT <u>benchmark models</u> considered

Benchmark model	$ $ c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
\mathbf{SM}	1	1	0	0	0
BM 1	3.94	0.94	1/2	1/3	-1/3
BM 2	6.84	0.61	0.0	-1/3	1/3
BM 3	2.21	1.05	1/2	1/2	-1/3
BM 4	2.79	0.61	-1/2	1/6	1/3
BM 5	3.95	1.17	1/6	-1/2	-1/3
BM 6	5.68	0.83	-1/2	1/3	1/3
BM 7	-0.10	0.94	1/6	-1/6	1

- The observed (expected) limits range from 50.4 (46.0) fb (benchmark model 7) to 135.1 (135.1) fb (benchmark model 2)
- Allowed observed (expected) ranges on the two <u>Wilson</u> <u>coefficients</u>:
 - c_{gghh} ∈ [-0.3, 0.4] ([-0.3, 0.3])
 c_{tthh} ∈ [-0.2, 0.6] ([-0.2, 0.6])



HL-LHC Prospects for di-Higgs

- <u>The High Luminosity LHC (HL-LHC)</u> <u>plans:</u>
 - Deliver 3000-4000 fb⁻¹ integrated
 luminosity @ √s = 14 TeV p-p collisions

• Basis of the projection studies

- O Extrapolate from full Run 2 HH→bbγγ and HH→bbττ analysis
- Use Run 2 object reconstruction and identification efficiencies
- → 1 σ confidence interval $\kappa_{\lambda} \in [0.5, 1.5]$ ([0.6, 1.5]) for baseline (no systematics)
- Significance of expected observation of SM di-Higgs production is 3.2 σ (4.6 σ) for baseline (no systematics)

Summary of the results presented

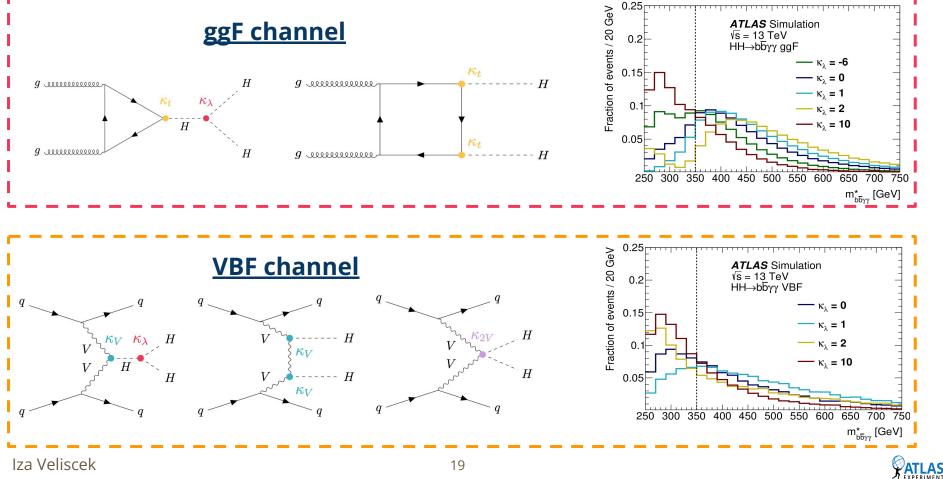
• The LHC Run-2 data is a sensitive dataset to new physics in the Higgs sector.

• ATLAS has a full programme of **Di-Higgs searches** constraining this important process

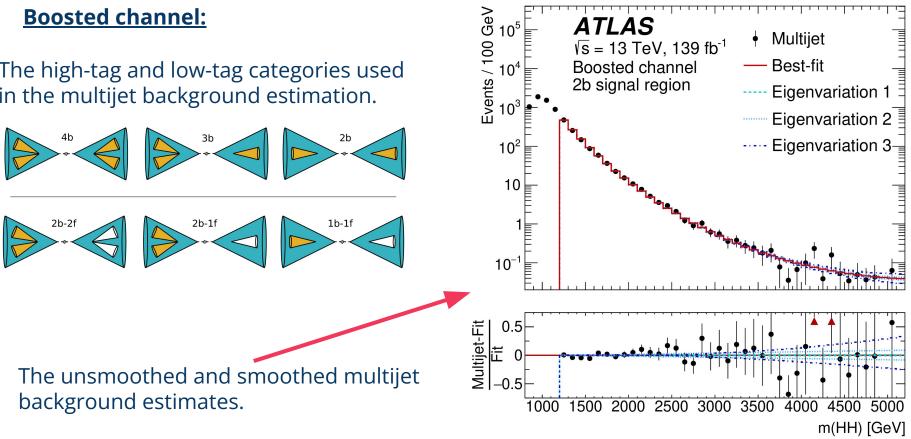
Di-Higgs results with full Run 2 dataset at the ATLAS Experiment

- Combined **resonant searches** in the **bbyy**, **bbtt** and **bbbb** final state set upper limits on the cross-section of a **spin-0 heavy scalar resonance** in the mass range of 251 GeV $\leq m_x \leq 3$ TeV
- Combined **non-resonant searches** in the **bbyy** and **bbtt** final state and set limits on the SM signal strength and allowed ranges of κ_{λ}
- HEFT interpretation using the bbyy and bbττ final state upper limits on the cross section for seven benchmark models and allowed ranges of c_{gghh} and c_{tthh}

• HL-LHC projections with the ATLAS detector


- Assume **3000 fb**⁻¹ integrated luminosity at $\sqrt{s} = 14 \text{ TeV}$
- Combined non-resonant searches in the bbyy and bbττ final states used to give expected 1σ confidence interval on κ_λ

BACKUP


Non-Resonant di-Higgs Production

Resonant bbbb

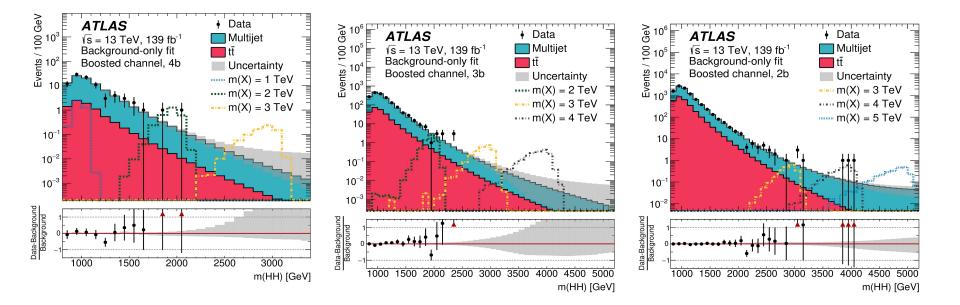
Boosted channel:

The high-tag and low-tag categories used in the multijet background estimation.

ATLAS

√s = 13 TeV, 139 fb⁻¹ **Boosted channel**

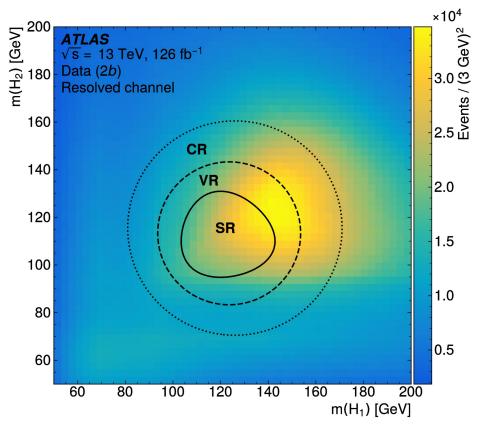
2b signal region


Multijet

Best-fit

Eigenvariation 1

Resonant bbbb


• **Boosted channel:**

Resonant HH->bbbb

• Kinematic region definitions in the Resolved channel

Iza Veliscek

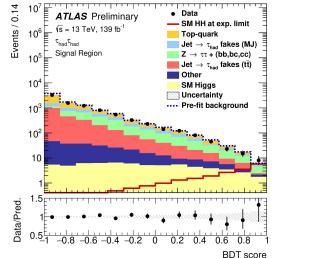
HH->bbtt

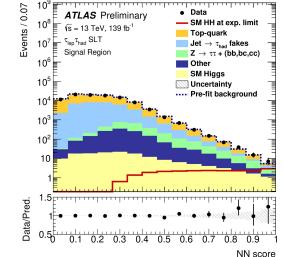
PATLAS

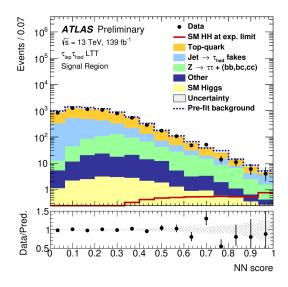
- H->bb: 2 b-tagged pflow jets H-> $\tau_{had} \tau_{had}$ or H-> $\tau_{lep} \tau_{had}$ opposite charge!
- H-> $\tau_{lep}\tau_{had}$ categorized on based the event passing the following trigger:
 - Single-lepton trigger
 Lepton-plus-tau trigger
- Backgrounds
 - Dominant tt and Z + heavy flavor
 - Normalization for Z + heavy flavor and tt simulated samples constrained from likelihood fits of signal and control regions
 - \circ Fake τ estimations based on data-driven method and simulations, mainly from tt or multijet
 - Other backgrounds: W+heavy flavor, diboson, single Higgs boson and multi-jet production
- Fit a machine learning observable (ML)
 - Shared input variables in non-resonant and resonant analysis, differences between categories

Non-resonant analysis:

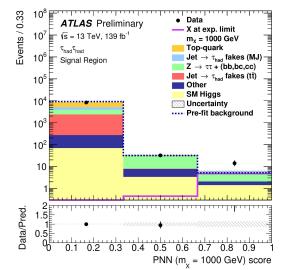
- MLs trained on non-resonant HH ggF signal
 - Boosted decision tree in H-> τ_{had} τ_{had}
 - Neural network in H-> τ_{lep} τ_{had}

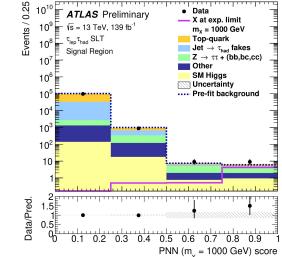

,
<u>Resonant analysis:</u>
• m _x ∈ [251, 1600] GeV
Parameterized neural network
 Heavy resonance mass
parameterized in the training

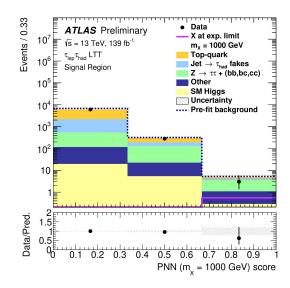

HH->bbTT: Variables used as inputs to the MLs


Variable	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep}\tau_{\rm had}$ SLT	$\tau_{\rm lep} \tau_{\rm had} \ {\rm LTT}$
m_{HH}	✓	~	1
$m_{ au au}^{ m MMC}$	\checkmark	1	1
m_{bb}	\checkmark	\checkmark	1
$\Delta R(au, au)$	1	\checkmark	1
$\Delta R(b,b)$	\checkmark	\checkmark	
$\Delta p_{ m T}(\ell, au)$		1	1
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		1	
m_{T}^W		\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}$		1	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		1	
$\Delta \phi(au au,bb)$		~	
$\Delta \phi(\ell, {f p}_{ m T}^{ m miss})$			1
$\Delta \phi(\ell au, {f p}_{ m T}^{ m miss})$			1
$S_{ m T}$			1

HH->bbTT: Variables used as inputs to the MLs

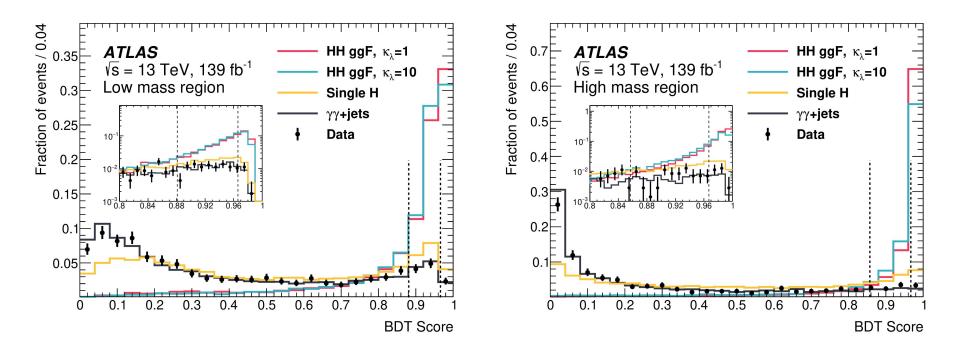






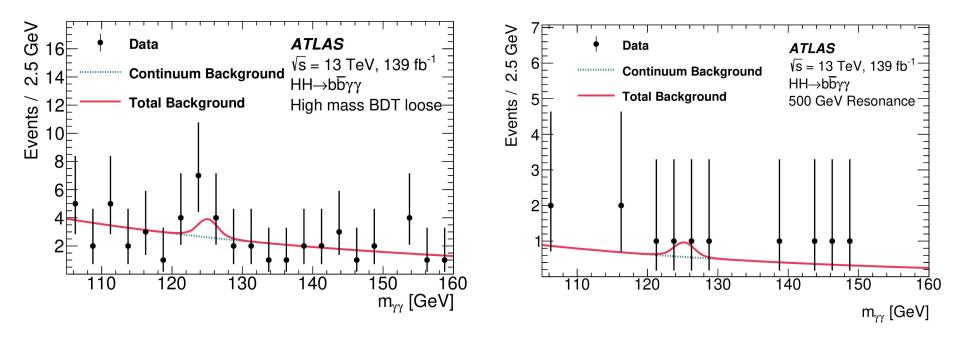
HH->bbTT: Resonant

HH->bbyy: Variables used in the BDT for the resonant analysis


Variable	Definition		
Photon-related kinematic variables			
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the diphoton system		
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angle and ΔR between the two photons		
Jet-related kinematic variables			
$m_{b\bar{b}}, p_{\mathrm{T}}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system		
$\Delta \phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angle and ΔR between the two <i>b</i> -tagged jets		
N _{jets} and N _{b-jets}	Number of jets and number of <i>b</i> -tagged jets		
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event		
Diphoton+dijet-related kinematic variables			
$m^*_{b\bar{b}\gamma\gamma}$	Invariant mass of the diphoton plus <i>b</i> -tagged jets system		
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the diphoton and the <i>b</i> -tagged jets system		
Missing transverse momentum variables			
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum		

HH->bbyy: Variables used in the BDT for the non-resonant analysis

-	Variable	Definition		
-	Photon-related kinematic variables			
-	$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of each of the two photons divided		
		by the diphoton invariant mass $m_{\gamma\gamma}$ Pseudorapidity and azimuthal angle of the leading and		
	η and ϕ	subleading photon		
-	Jet-related kinemat	ic variables		
-	<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (60% , 70% , or 77%) that the jet passes		
٠	$p_{\rm T}, \eta$ and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score		
	$p_{\rm T}^{b\bar{b}},\eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the <i>b</i> -tagged jets system		
	$m_{b\bar{b}}$	Invariant mass of the two jets with the highest <i>b</i> -tagging score		
	H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event		
	Single topness	For the definition, see Eq. (??)		
-	Missing transverse	momentum variables		
-	$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle		



HH->bbyy

Non-Resonant channel:

Resonant channel:

Iza Veliscek

HL-LHC Prospects for di-Higgs

• <u>The High Luminosity LHC (HL-LHC)</u> <u>plans:</u>

- Deliver **3000**-4000 fb⁻¹ integrated luminosity at $\sqrt{s} = 14$ TeV
- p-p collisions

Basis of the projection studies

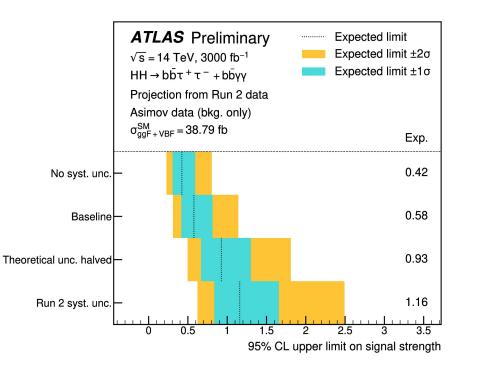
- O Extrapolate from the full Run 2
 HH→bbγγ and HH→bbττ analysis
 - 139 fb⁻¹ at √s = 13 TeV
- Assume Run 2 object reconstruction and identification efficiencies
- Assume 3000 fb⁻¹ integrated luminosity at √s = 14 TeV

Extrapolation procedure:

- 1. Scale signals and backgrounds by $L = \frac{L_{HL-LHC}}{L_{Run2}}$
- 2. Change of cross-sections to account for $\sqrt{s} = 14 \text{ TeV}$
- 3. Consider different systematics scenarios

Systematics Scenarios

[ATL-PHYS-PUB-2022-005]

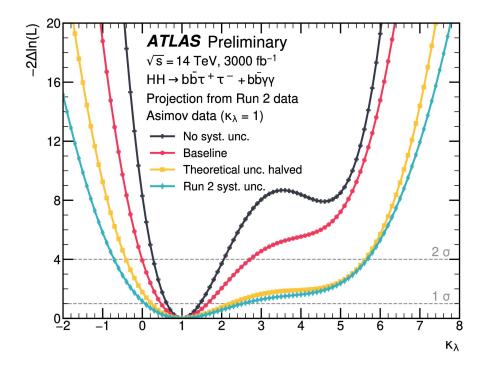

Systematics Scenarios:

- 1. No systematic uncertainties
- 2. Baseline Systematics
- 3. Theoretical uncertainties halved
 - a. Run 2 systematics uncertainties everywhere else
- 4. Run 2 systematics uncertainties

Baseline Systematics

- Uncertainty on integrated <u>luminosity</u>
 - ~1% (1.7 % in Run 2)
- **<u>Theoretical</u>** uncertainties halved
- Statistical uncertainties on Monte Carlo samples neglected
- **Experimental** uncertainties
 - \circ ~ Statistical competent scaled by 1/ $\!\!\!\sqrt{L}$
 - Detector components kept the same or modified according to detector and performance upgrades
 - **bbyy** specific uncertainties:
 - Spurious signal neglected
 - Uncertainty on Higgs boson mass 20 MeV (240 MeV in Run 2)

Combination results for bbyy and bbtt


Projected 95% CL upper limits on the expected signal strength for SM HH production:

- Expected exclusion at more than 99% CL for "no systematics" and "baseline" scenarios
 - 3.2 σ (4.6 σ) significance
 "baseline" ("no systematics")
 scenarios
- Expected accuracy ^{+34%} -31% (23%)
 "baseline" ("no systematics")

Combination results

- 1σ confidence interval κ_λ ∈ [0.5,1.5]
 ([0.6,1.5]) in baseline (no systematics) scenario
- Main limitations to the HH sensitivity
 - HH→bbɣɣ
 - Background modelling uncertainties
 - НН→bbтт
 - Theoretical uncertainties on:
 - σ_{нн}
 - Additional heavy-flavour jet radiation in some single H production modes
 - Limited size of simulated event samples

