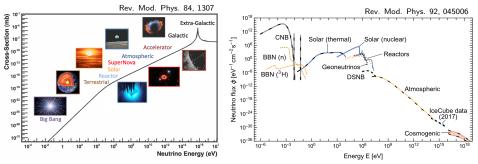
Resonances in $\bar{\nu}_e - e^-$ scattering at FASER ν and Forward Physics Facility

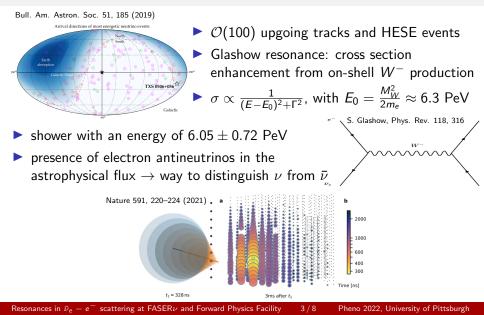
based on arXiv:2112.03283 (PRD 2022) in collaboration with A. de Gouvêa, P. Machado and R. Plestid

Vedran Brdar



Resonances in $\bar{\nu}_e - e^-$ scattering at FASER ν and Forward Physics Facility

Pheno 2022, University of Pittsburgh


Neutrino Fluxes and Cross sections

- reactor neutrino detection at Cowan–Reines neutrino experiment in 1956
- atmospheric neutrino detection in India and South Africa in 1965
- solar neutrino detection at Homestake mine in 1968
- supernova neutrino from SN 1987A
- high-energy astrophysical neutrino detection at IceCube in 2013
- collider neutrino detection in 2021 at FASERv

Resonances in $\bar{\nu}_e - e^-$ scattering at FASER ν and Forward Physics Facility 2/8 Pheno 2022, University of Pittsburgh

First Glashow Resonance Event at IceCube

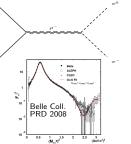
"Glashow-like" Events at Low Energies?

$$\bar{
u}_e e^-
ightarrow {
m meson}
ightarrow$$
 anything

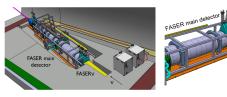
Breit-Wigner: $\sigma_{\rm res} = (2J+1)8\pi \,\Gamma^2 \,\mathrm{Br_{in}} \,\mathrm{Br_{fi}} \, \frac{s/M^2}{(s-M^2)^2 + M^2\Gamma^2}$

► pseudoscalar mesons: $\Gamma(\mathfrak{m} \to \bar{\nu}_e e^-) = \frac{G_F^2}{8\pi} f^2 m_{lep}^2 M\left(1 - \frac{m_{lep}^2}{M^2}\right) |V_{\text{CKM}}|^2$

• vector mesons:
$$\Gamma(\mathfrak{m} \to \bar{\nu}_e e^-) = \frac{G_F^2}{12\pi} f^2 M^3 |V_{\rm CKM}|^2$$

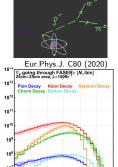

$$\bar{\nu}_e e^- \to \rho^- \to \pi^0 \pi^-$$

$$E_{\nu}^{res}(\rho^-) = \frac{(770 \text{MeV})^2}{2m_e} \approx 580 \text{ GeV}$$

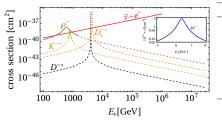

$$E_{\nu}^{res}(K^{-*}) \approx 780 \text{ GeV}$$

► alternative calculation using $\langle \pi^{-}(k_1)\pi^{0}(k_2)|V_{\mu}|0\rangle = (k_1 - k_2)_{\mu}F(q^2)$

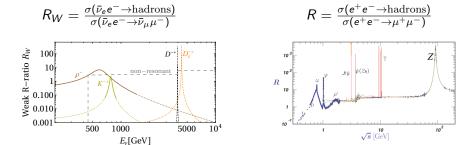
$\mathsf{FASER}\nu$ and FPF



 FASERν is a 1.2 tonne detector located 480 m from the ATLAS interaction point containing emulsion films and tungsten plates

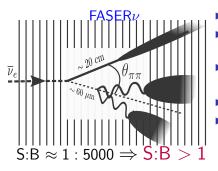

SASERV

- FASERv2 will be a 10 tonne detector at FPF utilizing HL-LHC fluxes
- FLArE will be LAr detector at FPF, placed 620 m from the ATLAS interaction point; 10 and 100 tonne configurations discussed



E_v [GeV]

Event Rates



Experiment	$\rho^-, \pm \Gamma/2$	$\rho^-, \pm 2\Gamma$	$K^{-*}, \pm \Gamma/2$	$K^{-*}, \pm 2\Gamma$
$FASER\nu$	0.3	0.5	-	-
$FASER\nu 2$	23	37	0.7	3
FLArE-10	11	19	0.3	2
FLArE-100	63	103	2	8
DeepCore	3(1)	5(2)	-	-
IceCube	8 (40)	17(83)	-	-

Resonances in $\bar{\nu}_e - e^-$ scattering at FASER ν and Forward Physics Facility 6/8 Pheno 2022, University of Pittsburgh

Signature of ρ^- Resonance

- cut on E_{π⁻} + E_{π⁰} to lie near 580 GeV
 θ_{νN} ~ 1/γ_{cm} ~ 28 mrad × √600 GeV/E_ν for deep inelastic scattering
 θ_{ππ} = 28 mrad √m_e/m_N × √600 GeV/E_ν =
 - $v_{\pi\pi} = 28 \operatorname{Imal} \sqrt{m_e/m_N} \times \sqrt{600 \operatorname{GeV}/\mathrm{E}_{\nu}} = 0.7 \operatorname{mrad} \times \sqrt{600 \operatorname{GeV}/\mathrm{E}_{\nu}}$ for $\bar{\nu} e$ scattering
- cut on charged track and photon multiplicity
- ► reconstruct the invariant mass of the $\pi^0 \pi^-$ pair, $m_{\pi\pi}^2 = m_{\pi^0}^2 + m_{\pi^-}^2 + E_{\pi^0} E_{\pi^-} \theta_{\pi\pi}^2$, and require it to lie within $\Gamma_{\rho} \sim 150$ MeV of $m_{\rho} \approx 770$ MeV

► Sweeper Magnet for FASERν2

FLArE:

▶ π^- and π^0 signature overlap and background mitigation strategies are more difficult; dE/dx can be used

IceCube:

▶ large background and difficult to identify $\pi^-\pi^0$ topology; $S:B\approx 1:100$

▶ The production of charged-meson resonances in $\bar{\nu}_e - e$ scattering is an interesting and previously inaccessible SM neutrino reaction

▶ We estimate 10–100 ρ^- meson resonance events at proposed FPF detectors

 Excellent spatial and angular resolution in case of FASER
 v allows for efficient background rejection