Self-supervision in particle physics

Data- and symmetry-driven definition of observables using machine learning

Barry M. Dillon

May 9, 2022

Institute for Theoretical Physics University of Heidelberg

Pheno 2022

Symmetries, Safety, and Self-Supervision, hep-ph/2108.04253

BMD, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson, and Lorenz Vogel

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

1. Jet physics & ML

2. Self-supervision

3. Results

4. Outlook

Top-tagging with machine-learning

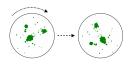


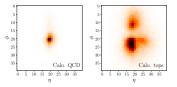
- simulations provide training data $\{\vec{x}_i\}$ and truth-labels $\{y'_i\}$
- · neural network is optimised to minimise a loss function
- loss function is minimised when QCD and top jets are well-separated in y
- · predicted label is a new observable used to tag top-jets

Learning physical quantities

Neural networks \Rightarrow inductive bias

- i.e. implicit assumptions made by the network on mapping input \rightarrow output
 - \rightarrow neural nets are not invariant to physical symmetries in data
 - \rightarrow we typically try to solve this through 'pre-processing'



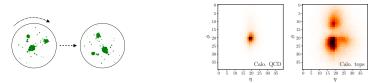


Learning physical quantities

Neural networks \Rightarrow inductive bias

i.e. implicit assumptions made by the network on mapping input \rightarrow output

- \rightarrow neural nets are not invariant to physical symmetries in data
- \rightarrow we typically try to solve this through 'pre-processing'



Our goal: control the training to ensure we learn physical quantities

- \rightarrow rotational & translation invariant, permutation invariant, IRC safe
- \rightarrow deep neural networks can never be completely interpretable
 - ... but we can place limits on what they can learn

1. Jet physics & ML

2. Self-supervision

3. Results

4. Outlook

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets

From the dataset of jets $\{x_i\}$ define:

- positive-pairs: {(x_i, x'_i)} where x'_i is an augmented version of x_i
- negative-pairs: $\{(x_i, x_j)\} \cup \{(x_i, x_i')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

 $\mathsf{Self}\text{-}\mathsf{supervision} \Rightarrow \mathsf{training} \text{ using `pseudo-labels'}$

Train a neural net to map constituents to a high-dim representation, $f:\mathcal{J}\to\mathcal{R}$ Optimise the mapping for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \Rightarrow invariance$
- 2. uniformity: negative-pairs far apart in $\mathcal{R} \Rightarrow \text{discriminative}$

Train a neural net to map constituents to a high-dim representation, $f:\mathcal{J}\to\mathcal{R}$ Optimise the mapping for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \Rightarrow invariance$
- 2. uniformity: negative-pairs far apart in $\mathcal{R} \Rightarrow$ discriminative

Contrastive loss:

$$\mathcal{L}_{i} = -\log \frac{\exp(s(z_{i}, z_{i}')/\tau)}{\sum_{x \in \text{batch}} \mathbb{I}_{i \neq j} \left[\exp(s(z_{i}, z_{j})/\tau) + \exp(s(z_{i}, z_{j}')/\tau)\right]}$$

Train a neural net to map constituents to a high-dim representation, $f:\mathcal{J}\to\mathcal{R}$ Optimise the mapping for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \Rightarrow invariance$
- 2. uniformity: negative-pairs far apart in $\mathcal{R} \Rightarrow$ discriminative

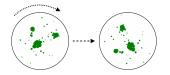
Contrastive loss:

$$\mathcal{L}_{i} = -\log \frac{\exp(s(z_{i}, z_{i}')/\tau)}{\sum_{x \in \text{batch}} \mathbb{I}_{i \neq j} \left[\exp(s(z_{i}, z_{j})/\tau) + \exp(s(z_{i}, z_{j}')/\tau) \right]}$$
Similarity measure in \mathcal{R} :
 $s(z_{i}, z_{j}) = \frac{z_{i} \cdot z_{j}}{|z_{i}||z_{j}|}$
 \Rightarrow defined on unit-hypersphere
JetCLR \rightarrow code at https://github.com/bmdillon/JetCLR

Augmenting jets

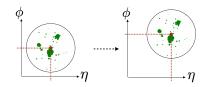
rotations

Angles sampled from $[0, 2\pi]$



translations

Translation distance sampled randomly



collinear splittings

some constituents randomly split,

$$p_{T,a} + p_{T,b} = p_T, \quad \eta_a = \eta_b = \eta$$

 $\phi_a = \phi_b = \phi$

low
$$p_T$$
 smearing

 (η, ϕ) co-ordinates are re-sampled:

$$\begin{split} \eta' &\sim \mathcal{N}\left(\eta, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}} r\right) \\ \phi' &\sim \mathcal{N}\left(\phi, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}} r\right). \end{split}$$

Network and training

Transformer-encoder network

- * based on 'self-attention' mechanism
- * output invariant to constituent ordering
 - \Rightarrow permutation invariance by construction

Similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler more info. in additional slides

Network and training

Transformer-encoder network

- \star based on 'self-attention' mechanism
- * output invariant to constituent ordering
 - \Rightarrow permutation invariance by construction

Similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler more info. in additional slides

The training loop:

- **1.** sample batch of jets, x_i
- create an augmented batch of jets, x[']_i
- 3. forward-pass both through the network
- 4. compute the contrastive loss & update weights

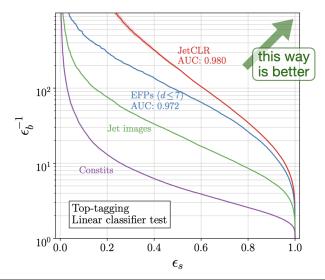
1. Jet physics & ML

2. Self-supervision

3. Results

4. Outlook

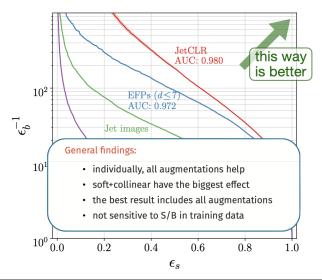
Linear classifier test results



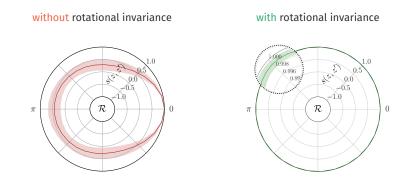
Barry M. Dillon

Self-supervision in particle physics

Linear classifier test results



Invariances in representation space



*
$$S(z, z') = \frac{z \cdot z'}{|z||z'|}$$
, $z = f(\vec{x})$, $z' = f(R(\theta)\vec{x})$

 \Rightarrow The network $f(\vec{x})$ is approx rotationally invariant

1. Jet physics & ML

2. Self-supervision

3. Results

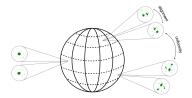
4. Outlook

Outlook

Self-supervision allows for:

- 1. data-driven definition of observables
- 2. invariance to pre-defined symmetries/augmentations
- ightarrow definition of observables based on data and symmetries only
- \rightarrow high discriminative power

An example: JetCLR (contrastive learning of jet observables)



Outlook

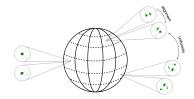
Self-supervision allows for:

- 1. data-driven definition of observables
- 2. invariance to pre-defined symmetries/augmentations
- $ightarrow \,$ definition of observables based on data and symmetries only
- \rightarrow high discriminative power

An example: JetCLR (contrastive learning of jet observables)

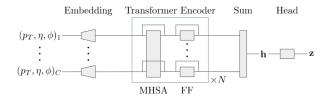
On-going work:

- Robust jet representations
- anomaly-detection
 better representations
 ⇒ better results!
 (coming soon...)



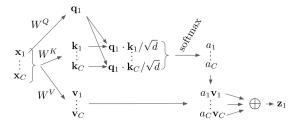
The network

We use a transformer-encoder network \rightarrow permutation invariance



Equivariance \rightarrow invariance is similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler

The attention mechanism captures correlations between constituents by allowing each constituent to assign attention weights to every other constituent.



Barry M. Dillon

The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

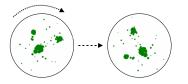
The training procedure:

- 1. sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

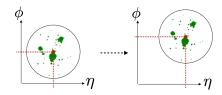
rotations

translations

Angles sampled from $[0, 2\pi]$



Translation distance sampled randomly



The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

collinear splittings

some constituents randomly split,

$$p_{T,a} + p_{T,b} = p_T, \quad \eta_a = \eta_b = \eta$$
$$\phi_a = \phi_b = \phi$$

low p_T smearing

 (η, ϕ) co-ordinates are re-sampled:

$$\begin{split} \eta' &\sim \mathcal{N}\left(\eta, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}}r\right) \\ \phi' &\sim \mathcal{N}\left(\phi, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}}r\right). \end{split}$$

The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

permutation invariance

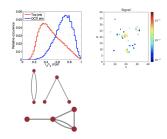
Transformer-encoder network

- based on 'self-attention' mechanism
- output invariant to constituent ordering

more info. in additional slides

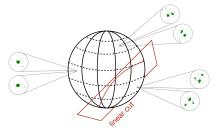
Quality measure of observables

- raw constituent data
- jet images
- Energy Flow Polynomials (Thaler et al: arXiv:1712.07124)



Compare these using a Linear Classifier Test (LCT)

- ⋆ use top-tagging as a test
- * linear cut in the observable space
- * supervised uses simulations
- * measures:
 - ϵ_{S} true positive rate
 - ϵ_b false positive rate

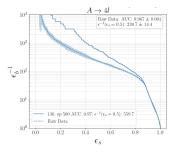


Self-supervised anomaly-detection (PRELIMINARY)

- 1 Self-supervised representations + autoencoders (w. Friedrich Feiden)
 - CMS anomaly-detection challenge
 - Events:

MET, 10 jets, 4 electrons, 4 muons

- Signal A \rightarrow 4l
- Self-supervision increases background rejection by O(5)



- 2 Representation-norm as an anomaly measure
- 3 Anomaly augmentations