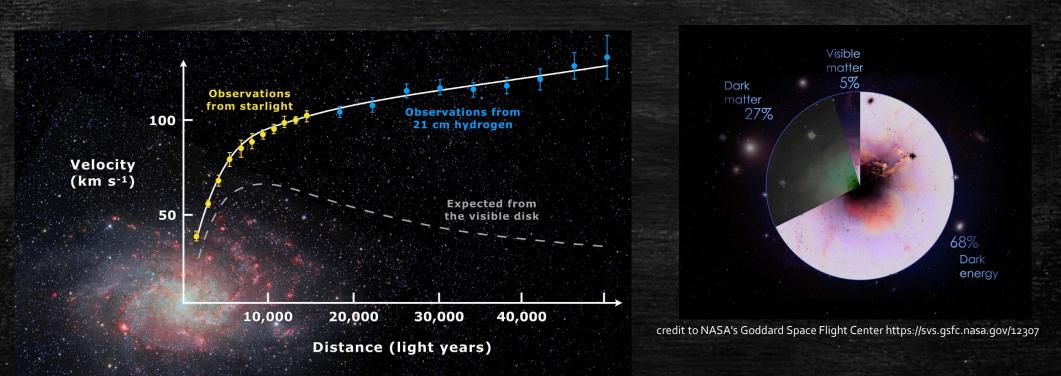
Next Phase of Split Supersymmetry with Thermal Dark Matter

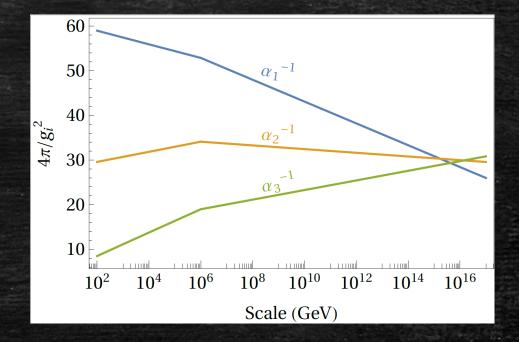

arXiv:2105.12142 2205.xxxxx

PHENO22, 5/5/2022

Ben Sheff – University of Michigan

Based on work in collaboration with Raymond Co – University of Minnesota, Aaron Pierce – University of Michigan James Wells – University of Michigan

Why Dark Matter



By Mario De Leo - Own work, CC BY-SA 4.o, https://commons.wikimedia.org/w/index.php?curid=74398525

2

Why Split SUSY Dark Matter

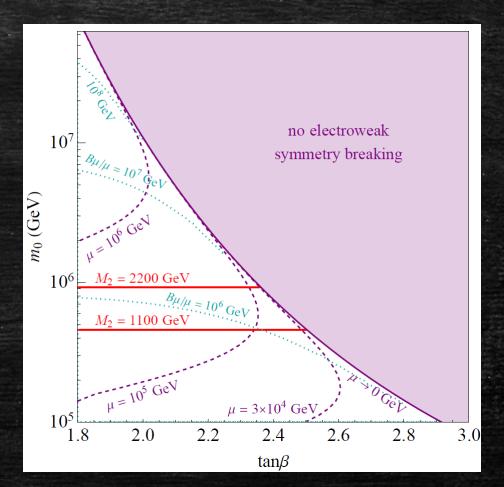
- Most of the advantages of SUSY, with very few parameters
 - Gauge coupling unification
 - Electroweak scale stabilization
- Unify scalar masses at high scale and give SUSY breaking gaugino masses by anomaly mediation

Anomaly Mediation

- Some scalar in a hidden sector
 - $-\Phi = 1 + F_{\Phi}\theta^2$
 - vev breaks SUSY
- Consider Super-Weyl transformation
 - Gives rise to an anomaly, leading to a shift in the gauge terms
 - $-2 \beta_{\lambda} \ln(\Phi)$
 - Anomaly balanced by gaugino masses: $m_{\lambda} = -\beta_{\lambda}g_{\lambda}^2 F_{\Phi}$
- Can also get terms $\Phi^2 \phi^2$ and $\Phi \psi^2$ in Lagrangian
 - Sfermions (ϕ) and gauginos (ψ) get mass enhanced by $|F_{\Phi}|$
 - If Φ has any charge, the latter is forbidden, so only sfermions get high mass

Randall, Sundrum hep-th/9810155 Gherghetta, Giudice, Wells hep-ph/9904378

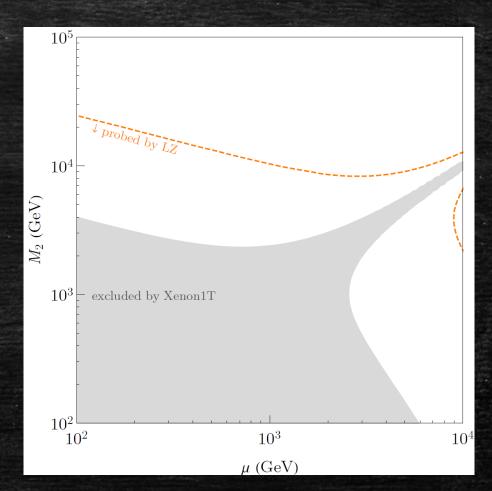
A More Abstract Picture


- Not the only way this story comes about
 - Strings story and more discussion on this story in literature

Randall, Sundrum hep-th/9810155

- General result: gaugino masses follow a ratio of their beta functions
 - M₃≈ 10M₂≈ 3M₁
 - Expect 300 $M_2 \sim -F_{\Phi} \sim m_{3/2} \sim m_0$
- Remaining degrees of freedom
 - tan β , m_o, μ , B μ
 - Can set μ or m_o assuming thermal Higgsino or Wino DM
 - $\mu = 1.1 \,\text{TeV}$ for Higgsino
 - $m_o = 0.9$ PeV for Wino
 - Lose two degrees of freedom from EW symmetry breaking requirements

EW Symmetry Breaking Requirements


- Scalar mass unification at GUT scale sets m_{Hu}, m_{Hd}
 - Use measured m_z
 - Set $tan\beta$ arbitrarily
- $\mu \ll m_o$ gives narrow band based on tuning m_{H_U} , m_{H_d} against one another
 - e.g. Higgsino DM curve, for $\mu = 1.1$ TeV, is invisible here
 - $B\mu/\mu$ can get large wrt m_o

Limited Accessibility to Usual Approaches

- Colliders are very limited for heavy, non-strongly coupled particles
- Direct detection cross section falls rapidly as the higgsinogaugino mixing angle
- Indirect detection has limited reach on higgsino mass
 - CMB measurements limited to O(100 GeV) Galli, et al. 0905.0003
 - CTA can reach near $\mu = 1 \text{ TeV}$

Rinchiuso, et al. 2008.00692

Electron Electric Dipole Moments

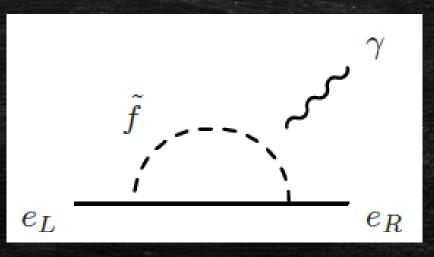
ACME II limit, 2018

- SUSY is well understood
 - Generically has large complex phases
 - Lead to charge parity violations
- Very little background to worry about
 - Electron EDM can come from SUSY charge parity breaking
 - In SM it's at most ~10⁻³⁵ e cm
 - Current limit is at 1.1 x 10⁻²⁹ e cm

Scale reference for EDM:

Water: 3.9 x 10⁻⁹ e cm Naïve neutron: 4 x 10⁻¹⁴ e cm Neutron limit: 10⁻²⁶ e cm

Next Phase of Split Supersymmetry with Thermal Dark Matter -- Ben Sheff


8

Electron EDM in Split SUSY

- Heavy scalars suppresses previous slide loops
- No 1 loop EDM
 - for O(1) phases, $m_o > 10$ TeV suppresses EDM below current limits

Cesarotti, et al. 1810.07736

Move to two loop

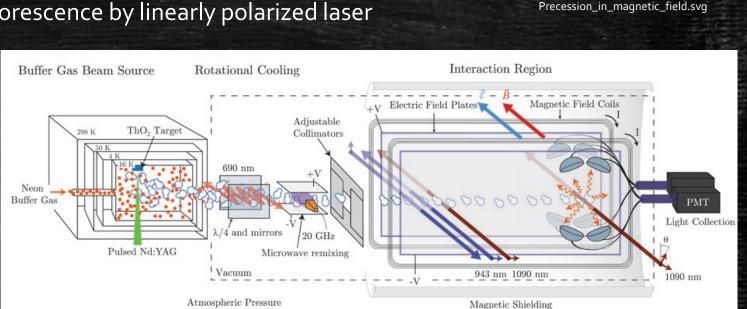
Barr-Zee Diagram

Leading order diagrams for EDM

M_{2} , $\mu >> m_{Z}$ gives:

$$\begin{aligned} d_{\gamma h} &\simeq \frac{-e\alpha m_e}{8\pi^3} \frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{\gamma h} \left(\frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2}\right) \\ d_{Zh} &\simeq \frac{e \left(4 \sin^2 \theta_W - 1\right) \alpha m_e}{32\pi^3 \cos^2 \theta_W} \frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{Zh} \left(\frac{m_Z^2}{m_h^2}, \frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2}\right) \\ d_{WW} &\simeq \frac{-e\alpha m_e}{32\pi^3 \sin^2 \theta_W} \left(\frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{WW}^{(2)} \left(\frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2}\right) + \frac{\tilde{g}'_u \tilde{g}'_d}{M_1 \mu} \sin \phi_1 F_{WW}^{(1)} \left(\frac{M_1^2}{\mu^2}, \frac{M_1 \mu}{m_h^2}\right)\right) \end{aligned}$$

 $\tilde{\chi}^+$ $\tilde{\chi}^+$ e_L e_R $\tilde{\chi}^+$ e_L e_R $\tilde{\chi}^0$ WW e_L ν_e e_R

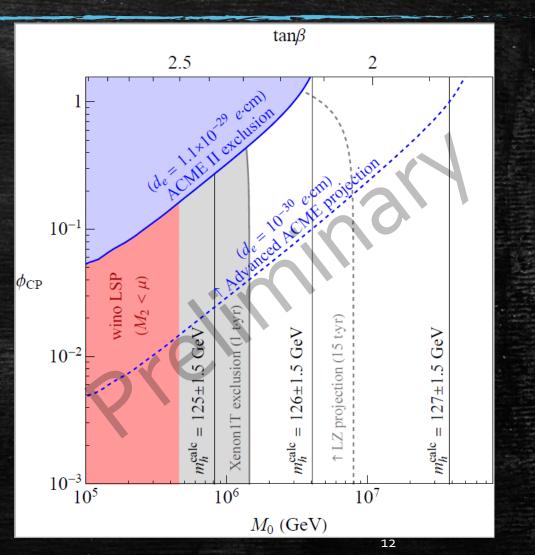

Giudice, Romanino hep-ph/0510197

Next Phase of Split Supersymmetry with Thermal Dark Matter -- Ben Sheff

DOI: 10.1038/s41586-018-0599-8

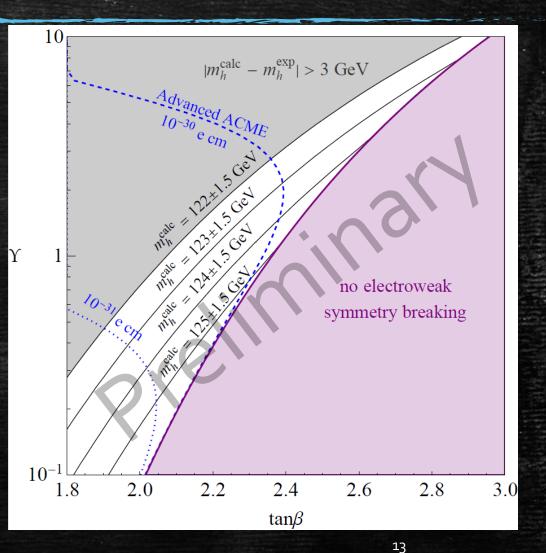
How to measure EDM: ACME II

- Precession of EDM in a strong electric field D
 - Field inside ThO molecule is one of the strongest known: 80 GV/cm
- Propagate molecules through shielded chamber
 - Known time-of-flight
 - excite electron to particular spin angle in xy-plane at start
 - measure final angle with fluorescence by linearly polarized laser
- Current measurements at 1.1 X 10⁻²⁹ e-cm


https://www.danielang.net/2016/10/16/guide-to-the-acme-edm-experiment-a-simple-overview/

11

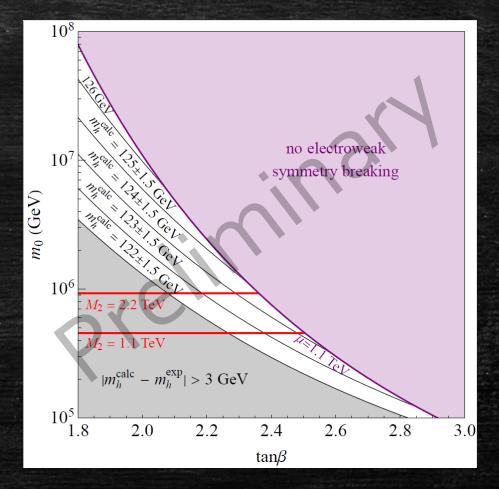
By Mario De Leo https://commons.wikimedia.org/wiki/File:


Higgsino Like Dark Matter Limits

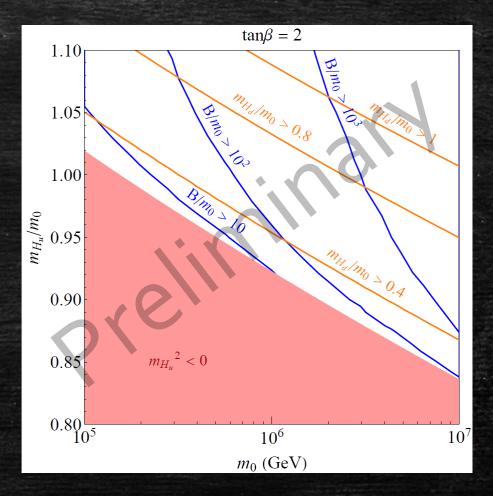
- A bit of a race between approaches
 - LZ gives broad coverage in DD limits, limited by M_2^2 scaling
 - e-EDM reach is very wide
 - Up to complex phase or large M₂
- Complementary Higgs Mass Constraints
 - Upper bound can be limited by Higgs mass
 - Dependence on future top quark mass measurements

Wino Like Dark Matter Limits

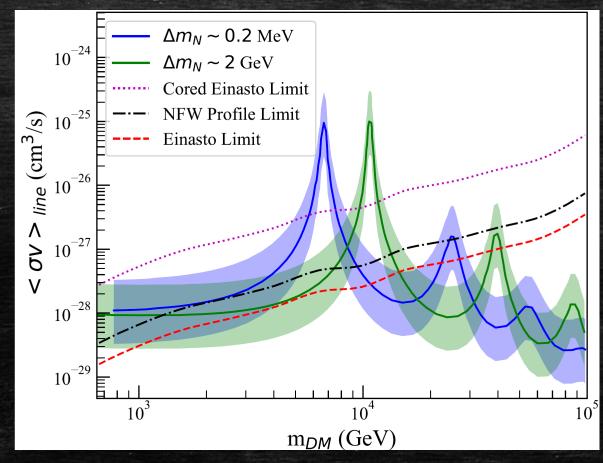
- Y is a relative enhancement of gaugino masses wrt scalar masses
- Direct Detection limits are fairly weak in this regime
 - Suppression of nucleon scattering below LZ reach by large μ
- Next to next generation electron EDM has discovery potential
- Significant discovery and exclusion already from indirect detection limits
 Cohen, et al. 1307.4082



Next Phase of Split Supersymmetry with Thermal Dark Matter -- Ben Sheff


Higgs Mass over the full parameter space

- Error bars in roughly equal measure from
 - Theory errors
 - Precision on top quark mass



Easing the EW symmetry breaking conditions

 Allow the Higgs masses to vary from the unified value at GUT scale

Line photon indirect detection searches for Higgsinos

Data for curves courtesy of Rinchiuso, et al. 1905.00315, Hryczuk, et al 2008.00692

17

A Brief History

 1998 – Conformal anomaly leads to anomaly mediated SUSY breaking (AMSB), possibly with high mass scalars

2004 – Early proposal of split SUSY, PeV scalars

2012-2013 – Natural models built with AMSB

Constraints on thermal wino imply higgsino LSP of particular interest

 2018-2022 – Higgsino LSP combined with AMSB in Split SUSY Randall, Sundrum hep-th/9810155 Giudice, et al. hep-ph/9810442

Wells hep-ph/0411041 Arkani-Hamed, et al. hep-ph/0409232

Baer, et al. hep-ph/1203.5539 Baer, et al. hep-ph/1207.3343 Cohen, et al. hep-ph/1307.4082

Baer, Barger, Sengupta hep-ph/1801.09730 Cesarotti, et al. hep-ph/1810.07736 Tata hep-ph/2002.04429 Co, Sheff, Wells hep-ph/2105.12142