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Motivation

• The hard process and the parton shower are perturbative in their nature
⇒ Theoretical under control

• Hadronization is inherently non-perturbative
⇒ Forced to use phenomenological models

• First step: Create a Machine Learning (ML) Architecture that is able to reproduce the
simplified Lund String Model

• Goal: Train on real experimental data and replace the Hadronization model in PYTHIA
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VAE

• VAE is a commonly used generative model:

→ Not flexible with the latent representation

→ kl-divergence limits latent distribution to a simple analytical form (e.g. Gaussian)

(a) Vanilla VAE
(arXiv: 1312.6114 ) (b) VAE latent space
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cSWAE

(a) cSWAE architecture
(b) SWAE latent space

(arXiv: 1804.01947 )

Total loss: L = Lrec + LSWD
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Lund-String model
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Lund-String model

• Selection of the flavor and hadron kinematics are independent until the final stages

• Final stages of hadronization: String energy is close to the nonperturbative scale → the flavor and

kinematic selection become interwined

⇒ CM string energy cutoff Ecut = 5 GeV

• Coordinate system is oriented such the z-axis and the initial string direction are aligned

px = pT cosφ py = pT sinφ pT =
√

p2
x + p2

y

• String breaking and hadron emission are axial symmetric in PYTHIA

⇒ Reduces to a 2 variable problem: pz and pT

• Input data xi ∈ [p
(i)
z , p

(i)
T ] ; conditioned on the initial string energy Ei

• Limit the training on light quark flavors and only pions as final state hadrons
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MLHAD overview
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Illustration of the conditional generation
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⇒ Fixed initial string energy: Ei = 50 GeV
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Results
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(a) MLHAD generated pz and latent distribution
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(b) MLHAD generated pT and latent distribution
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Results
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Conclusion and Outlook

• MLHAD based on the cSWAE architecture was succesfully trained on a simplified PYTHIA Hadronization

model

⇒ limited to light quark flavor endings of the string and only pions as final state hadrons

⇒ MLHAD is extendable to handle all possible string flavors and kinematics

• Flexibility in the choice of the latent space distribution (does not need to have an analytical form)

• Public code available: https://gitlab.com/uchep/mlhad

Work in progress 1

• Performing training on physically accessible observables to train MLHAD on real experimental data

• Extending MLHAD e.g. additional conditional labels allow:

→ Additional conditional labels allow to generate hadron flavors with kinematic dependence

→ Replacing PYTHIA’s FS by a ML architecture

→ Interpolating to different string energies

• Exploring different architectures (e.g. based on normalizing flows and RNNs)
1In collaberation with P. Ilten, T. Menzo, J. Zupan, M. Szewc and S. Mrenna
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Back up
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cSWAE Training-process

• conditioned on initial string energy Ei → ci = (c̄i , 1 − c̄i):

Ei = Eminc̄i + Emax(1 − c̄i) ⇒ c̄i =
Emax − Ei

Emax − Emin

• Encoder ϕ:

• Input data xi is a Ne = 100 dimensional vector, where xi ∈ [p
(i)
z,k , p

(i)
T ,k ]

• pz and pT are uncorrelated and treated seperately
• Takes as input xi and ci ; returns the latent space vector z̄i = ϕ(xi , ci)

• Decoder ψ:
• Takes as input z̄i and returns x̄i = ψ(ϕ(xi , ci))

• Limit the training on light quark flavors and only pions as final state hadrons
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cSWAE architecture

Lrec =
1

Ntr

Ntr∑
i=1

[ 1

Q
d2

2 (xi ,ψ(ϕ(xi , ci))) + d1(xi ,ψ(ϕ(xi , ci)))
]
,

LSW =
λ

LNtr

L∑
ℓ=1

Ntr∑
i=1

dSW(θℓ · z[i]ℓ ,θℓ · ϕ(x[i]ℓ , ci)),
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cSWAE architecture
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