

## Modeling Hadronization using Machine Learning

### Phenomenology 2022 Symposium

Ahmed Youssef

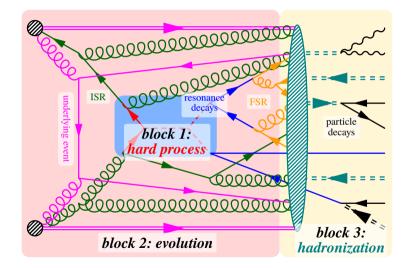
Based on 2203.04983 with P. Ilten, T. Menzo and J. Zupan

May 9, 2022

University of Cincinnati Department of Physics



#### Motivation





- The hard process and the parton shower are perturbative in their nature
  - $\Rightarrow$  Theoretical under control
- Hadronization is inherently non-perturbative

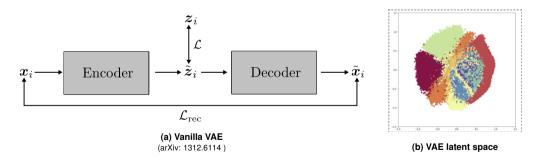
 $\Rightarrow$  Forced to use phenomenological models

- First step: Create a Machine Learning (ML) Architecture that is able to reproduce the simplified Lund String Model
- Goal: Train on real experimental data and replace the Hadronization model in PYTHIA

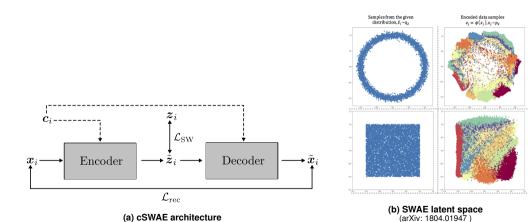




- VAE is a commonly used generative model:
  - $\rightarrow$  Not flexible with the latent representation
  - ightarrow kl-divergence limits latent distribution to a simple analytical form (e.g. Gaussian)



#### **cSWAE**

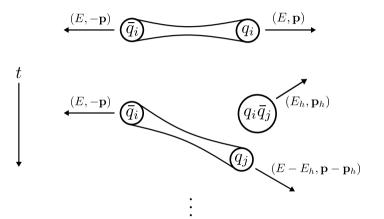


Total loss: 
$$\mathcal{L} = \mathcal{L}_{\it rec} + \mathcal{L}_{\it SWD}$$

May 9, 2022

University of CINCINNATI





University of CINCINNATI



- Selection of the flavor and hadron kinematics are independent until the final stages
- Final stages of hadronization: String energy is close to the nonperturbative scale → the flavor and kinematic selection become interwined

 $\Rightarrow$  CM string energy cutoff  $E_{\rm cut} = 5~{
m GeV}$ 

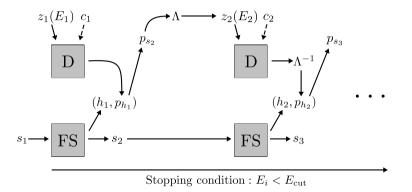
• Coordinate system is oriented such the z-axis and the initial string direction are aligned

$$p_x = p_T \cos \varphi$$
  $p_y = p_T \sin \varphi$   $p_T = \sqrt{p_x^2 + p_y^2}$ 

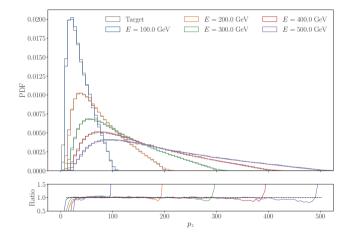
- String breaking and hadron emission are axial symmetric in PYTHIA  $\Rightarrow$  Reduces to a 2 variable problem:  $p_z$  and  $p_T$
- Input data  $\mathbf{x_i} \in [p_z^{(i)}, p_T^{(i)}]$ ; conditioned on the initial string energy  $E_i$
- Limit the training on light quark flavors and only pions as final state hadrons



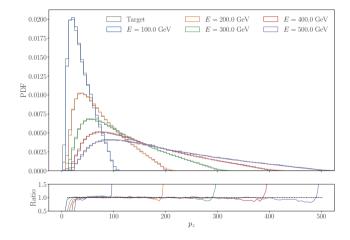
#### **MLHAD overview**



## CINCINNATI Illustration of the conditional generation



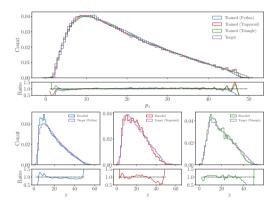
## CINCINNATI Illustration of the conditional generation



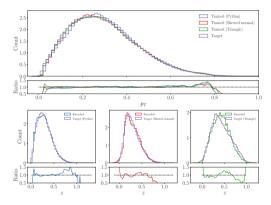
 $\Rightarrow$  Fixed initial string energy:  $E_i = 50 \text{ GeV}$ 



#### **Results**

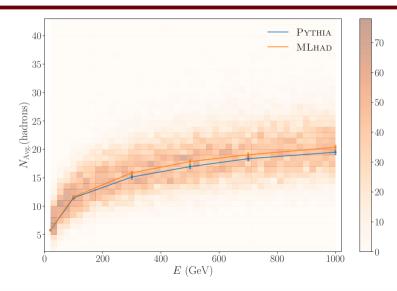


(a) MLHAD generated  $p_z$  and latent distribution



(b) MLHAD generated  $p_T$  and latent distribution

#### **Results**







 MLHAD based on the cSWAE architecture was succesfully trained on a simplified PYTHIA Hadronization model

 $\Rightarrow$  limited to light quark flavor endings of the string and only pions as final state hadrons

 $\Rightarrow$  MLHAD is extendable to handle all possible string flavors and kinematics

- Flexibility in the choice of the latent space distribution (does not need to have an analytical form)
- Public code available: https://gitlab.com/uchep/mlhad

#### Work in progress <sup>1</sup>

- Performing training on physically accessible observables to train MLHAD on real experimental data
- Extending MLHAD e.g. additional conditional labels allow:
  - ightarrow Additional conditional labels allow to generate hadron flavors with kinematic dependence
  - ightarrow Replacing PYTHIA's FS by a ML architecture
  - ightarrow Interpolating to different string energies
- Exploring different architectures (e.g. based on normalizing flows and RNNs)

<sup>1</sup> In collaberation with P. Ilten, T. Menzo, J. Zupan, M. Szewc and S. Mrenna



# Back up



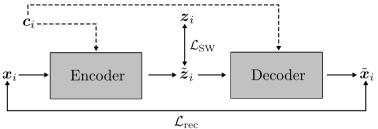
• conditioned on initial string energy  $E_i \rightarrow c_i = (\bar{c}_i, 1 - \bar{c}_i)$ :

$$E_i = E_{min} \overline{c}_i + E_{max} (1 - \overline{c}_i) \Rightarrow \overline{c}_i = rac{E_{max} - E_i}{E_{max} - E_{min}}$$

- Encoder  $\phi$ :
  - Input data  $\mathbf{x_i}$  is a  $N_e = 100$  dimensional vector, where  $\mathbf{x_i} \in [p_{z,k}^{(i)}, p_{T,k}^{(i)}]$
  - $p_z$  and  $p_T$  are uncorrelated and treated seperately
  - Takes as input  $x_i$  and  $c_i$ ; returns the latent space vector  $\overline{z}_i = \phi(x_i, c_i)$
- Decoder  $\psi$ :
  - Takes as input  $\overline{z}_i$  and returns  $\overline{x}_i = \psi(\phi(x_i, c_i))$
- · Limit the training on light quark flavors and only pions as final state hadrons



#### cSWAE architecture

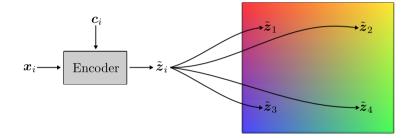




$$egin{split} \mathcal{L}_{ ext{rec}} =& rac{1}{N_{ ext{tr}}} \sum_{i=1}^{N_{ ext{tr}}} \left[ rac{1}{Q} d_2^2(\pmb{x}_i, \pmb{\psi}(\pmb{\phi}(\pmb{x}_i, \pmb{c}_i))) + d_1(\pmb{x}_i, \pmb{\psi}(\pmb{\phi}(\pmb{x}_i, \pmb{c}_i))) 
ight], \ \mathcal{L}_{ ext{SW}} =& rac{\lambda}{LN_{ ext{tr}}} \sum_{\ell=1}^L \sum_{i=1}^{N_{ ext{tr}}} d_{ ext{SW}}(\pmb{ heta}_\ell \cdot \pmb{z}_{[i]_\ell}, \pmb{ heta}_\ell \cdot \pmb{\phi}(\pmb{x}_{[i]_\ell}, \pmb{c}_i)), \end{split}$$



#### cSWAE architecture



16