CONSTRAINTS ON SELF-INTERACTING RADIATIONS FROM COSMOLOGICAL DATA

Based on:

Thejs Brinckmann, JHC, and Marilena LoVerde, ArXiv:2012.11830

Thejs Brinckmann, JHC, Peizhi Du, and Marilena LoVerde, To Appear

Jae Hyeok Chang

Johns Hopkins University and University of Maryland

05/10/2022 Phenomenology 2022 Symposium

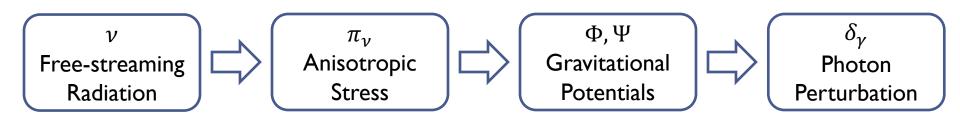
Light Relics

- **Relics** : A species of particles that is produced in the early universe and remains at late times
- **Light** : Relativistic at least at epochs probed by the CMB and BBN
- Photons and neutrinos are obvious examples
- Many BSM models predict novel light relics

N_{eff} Parameter

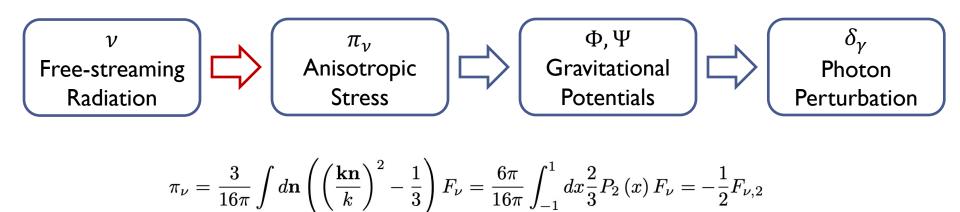
$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} + \rho_{X} = \rho_{\gamma} \left(1 + N_{\rm eff} \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}} \right)^{4} \right)$$

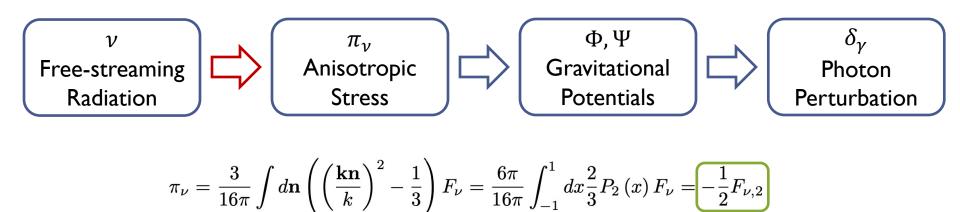
- Most important physical quantity of light relics is energy density
- Total radiation energy density is parameterized with $N_{\rm eff}$
- Larger N_{eff} changes CMB power spectrum
 - Amplitude suppression
 - Phase shift

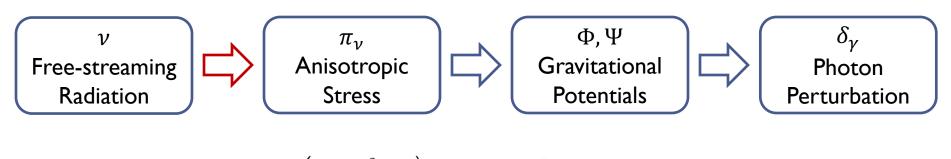

Beyond N_{eff}

Even for the same N_{eff} , interacting and non-interacting radiations leave **different** imprints on observables

$$F_{\nu}\left(\mathbf{n};\eta,\mathbf{k}\right) = \frac{4\pi}{\rho_{\nu}a^{4}} \int \kappa^{3} d\kappa f_{\nu}^{(0)}(\kappa) \cdot \delta f_{\nu}\left(\boldsymbol{\kappa};\eta,\mathbf{x}\right) \cdot e^{i\mathbf{k}\cdot\mathbf{x}} d^{3}\mathbf{x} = \sum_{l=0}^{\infty} \left(2l+1\right) \left(-i\right)^{l} \cdot F_{\nu,l}\left(\eta,\mathbf{k}\right) \cdot P_{l}\left(\frac{\mathbf{k}\mathbf{n}}{k}\right)$$


$$F_{\nu}\left(\mathbf{n};\boldsymbol{\eta},\mathbf{k}\right) = \frac{4\pi}{\rho_{\nu}a^{4}}\int\kappa^{3}d\kappa f_{\nu}^{(0)}(\kappa)\cdot\delta f_{\nu}\left(\boldsymbol{\kappa};\boldsymbol{\eta},\mathbf{x}\right)\cdot\mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}}d^{3}\mathbf{x} = \sum_{l=0}^{\infty}\left(2l+1\right)\left(-i\right)^{l}\cdot F_{\nu,l}\left(\boldsymbol{\eta},\mathbf{k}\right)\cdot P_{l}\left(\frac{\mathbf{k}\mathbf{n}}{k}\right)$$

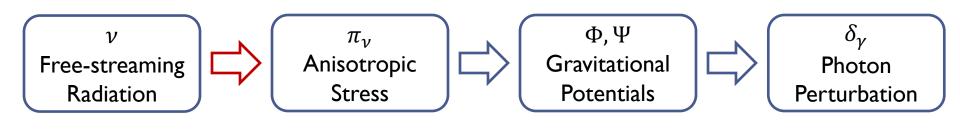

Neutrino Perturbations



$$F_{\nu}(\mathbf{n};\eta,\mathbf{k}) = \frac{4\pi}{\rho_{\nu}a^4} \int \kappa^3 d\kappa f_{\nu}^{(0)}(\kappa) \cdot \delta f_{\nu}(\kappa;\eta,\mathbf{x}) \cdot e^{i\mathbf{k}\cdot\mathbf{x}} d^3\mathbf{x} = \sum_{l=0}^{\infty} (2l+1) (-i)^l \cdot F_{\nu,l}(\eta,\mathbf{k}) \cdot P_l\left(\frac{\mathbf{k}\mathbf{n}}{k}\right)$$

Neutrino Perturbations

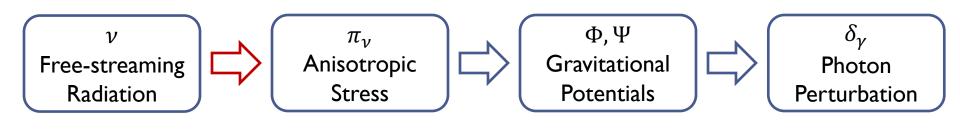
Decompose with Legendre polynomial



$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k} \right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}(x) F_{\nu}$$

For neutrino

$$\pi'_{
u} = rac{4}{15}k^2v_{
u} + rac{3}{10}kF_{
u,3}$$

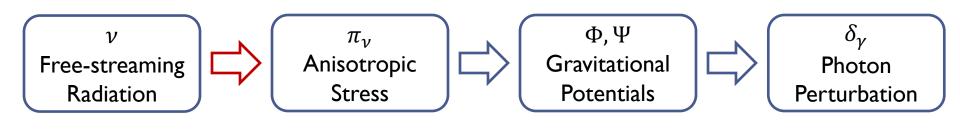

$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k} \right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}(x) F_{\nu$$

For neutrino

$$\pi'_{\nu} = \frac{4}{15}k^2v_{\nu} + \frac{3}{10}kF_{\nu,3}$$

For photon

$$\pi'_{\gamma} - \frac{4}{15}k^2v_{\gamma} - \frac{3}{10}kF_{\gamma,3} = -\frac{9}{10}\tau'\pi_{\gamma}$$


$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k} \right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}(x) F_{\nu$$

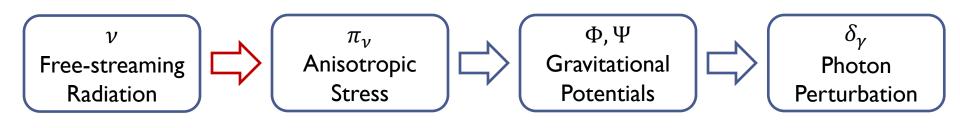
For neutrino

$$\pi'_{\nu} = \frac{4}{15}k^2v_{\nu} + \frac{3}{10}kF_{\nu,3}$$

For photon

$$\pi_{\gamma}' - rac{4}{15}k^2 v_{\gamma} - rac{3}{10}kF_{\gamma,3} = -rac{9}{10} au'\pi_{\gamma}$$

$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k}\right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}(x) F_{\nu}$$


For neutrino

$$\pi'_{\nu} = \frac{4}{15}k^2v_{\nu} + \frac{3}{10}kF_{\nu,3}$$

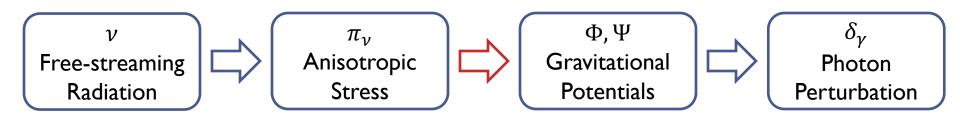
For photon

$$\pi_{\gamma}' - rac{4}{15}k^2 v_{\gamma} - rac{3}{10}kF_{\gamma,3} = -rac{9}{10} au'\pi_{\gamma}$$

- au' is the interaction rate
- The interaction suppresses π_{γ}

$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k}\right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}$$

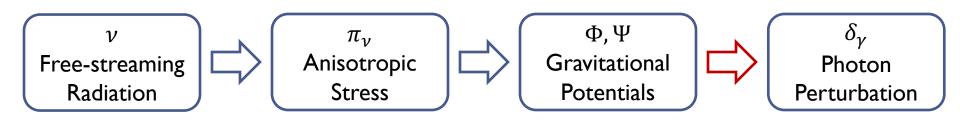
For neutrino


$$\pi'_{\nu} = \frac{4}{15}k^2v_{\nu} + \frac{3}{10}kF_{\nu,3}$$

• π_{ν} evolves freely

For photon $4 \circ 3 \circ 9$

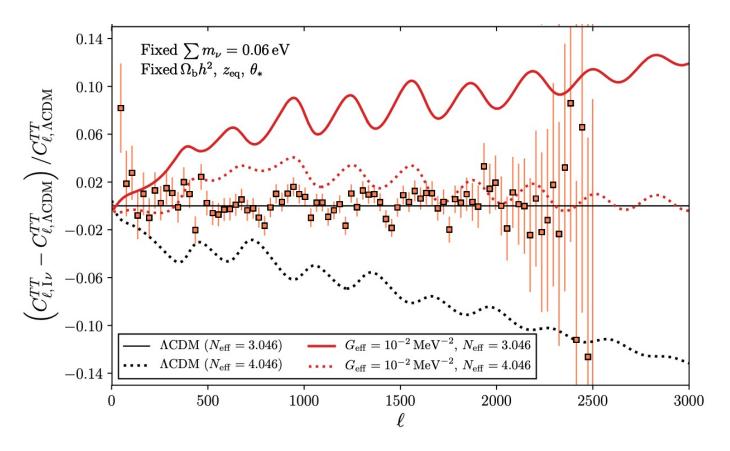
$$\pi'_{\gamma} - \frac{4}{15}k^2 v_{\gamma} - \frac{5}{10}kF_{\gamma,3} = -\frac{9}{10}\tau'\pi_{\gamma}$$


- au' is the interaction rate
- The interaction suppresses π_{γ}

$$ds^{2} = a^{2}(\eta)[(1+2\Phi)d\eta^{2} - (1+2\Psi)d\mathbf{x}^{2}]$$
$$\Delta (\Phi + \Psi) = -12\pi Ga^{2} \cdot [(\rho + p)\pi]_{tot}$$

• If
$$\pi = 0$$
, we have $\Psi = -\Phi$

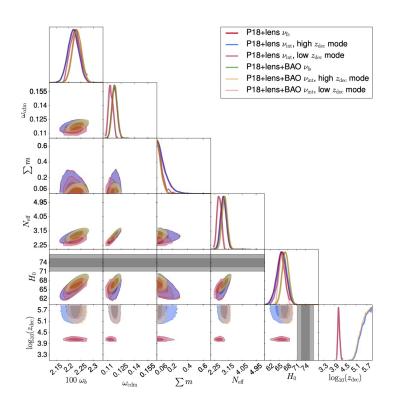
• In Standard Model, $\Psi = -\left(1 + \frac{2}{5}R_{\nu}\Phi\right) \approx -1.16\Phi$ where $R_{\nu} = \frac{\rho_{\nu}}{\rho} \approx 0.41$ due to neutrinos


$$\delta_{\gamma}' - rac{4k^2}{3}v_{\gamma} + 4\Psi' = 0,$$

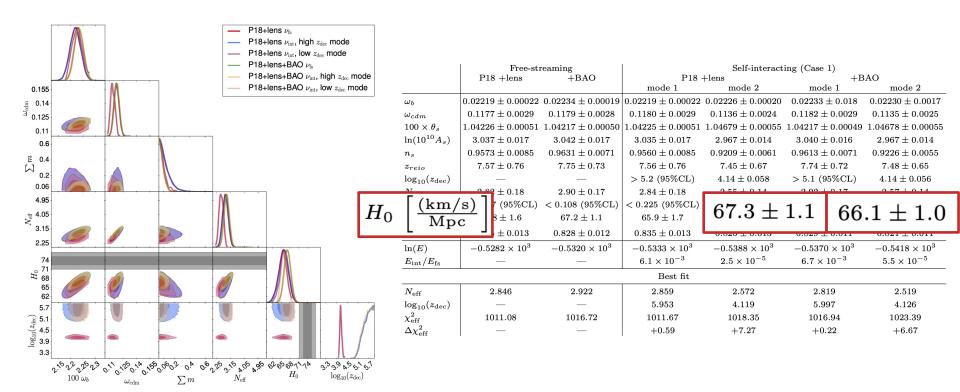
 $v_{\gamma}' + rac{1}{4}\delta_{\gamma} + \pi_{\gamma} + \Phi = -(v_{\gamma} - v_B)rac{ au'}{k}$

- Amplitude suppression
- Phase shift

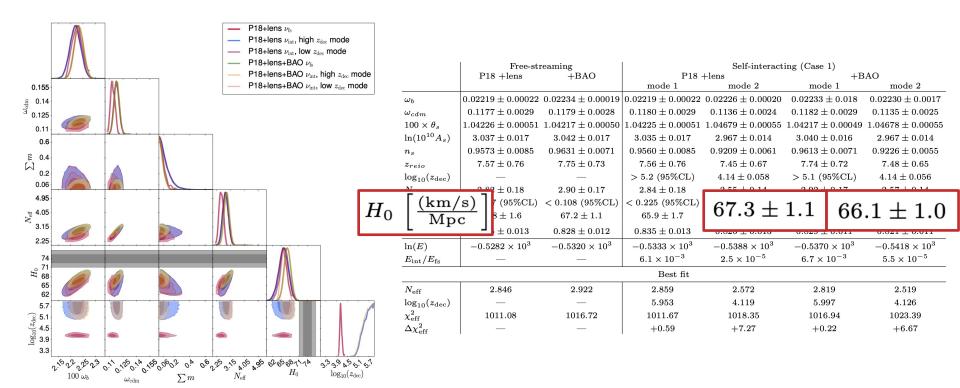
If Neutrinos have Self-Interaction



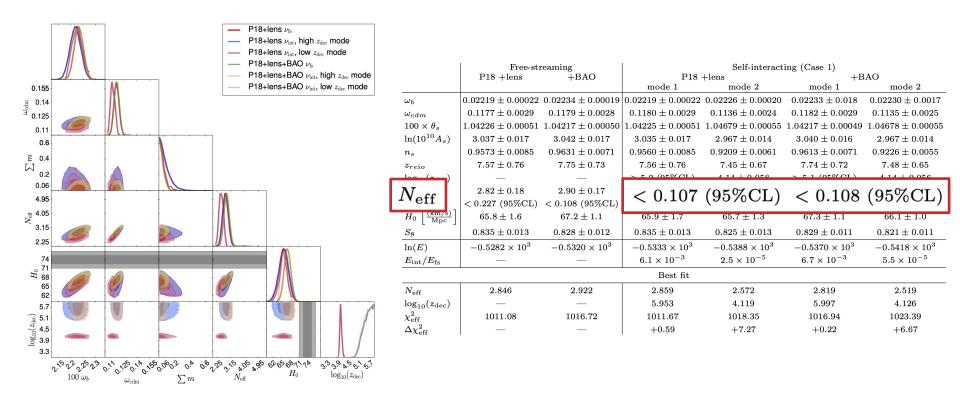
- π_{ν} suppressed at early time
- The effect of free-streaming decreases
- Can compensate the effect of additional radiation


Self-interacting neutrino was proposed as a solution to the Hubble tension

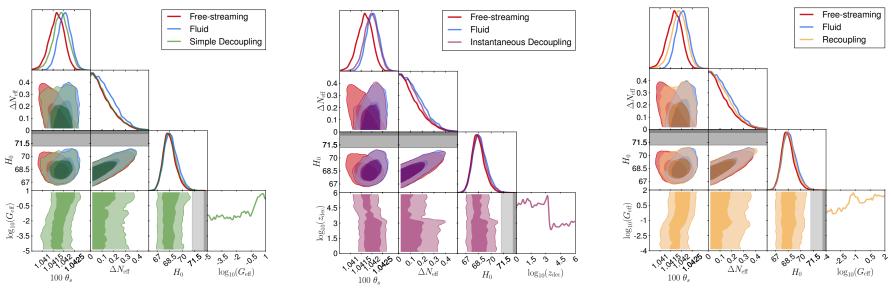
Kreisch, Cyr-Racine, Doré, 1902.00534



	Free-streaming		Self-interacting (Case 1)			
	P18 + lens	+BAO				AO
			mode 1	mode 2	mode 1	mode 2
ω_b	0.02219 ± 0.00022	0.02234 ± 0.00019	0.02219 ± 0.00022	0.02226 ± 0.00020	0.02233 ± 0.018	0.02230 ± 0.0017
ω_{cdm}	0.1177 ± 0.0029	0.1179 ± 0.0028	0.1180 ± 0.0029	0.1136 ± 0.0024	0.1182 ± 0.0029	0.1135 ± 0.0025
$100 imes \theta_s$	1.04226 ± 0.00051	1.04217 ± 0.00050	1.04225 ± 0.00051	1.04679 ± 0.00055	1.04217 ± 0.00049	1.04678 ± 0.00055
$\ln(10^{10}A_s)$	3.037 ± 0.017	3.042 ± 0.017	3.035 ± 0.017	2.967 ± 0.014	3.040 ± 0.016	2.967 ± 0.014
n_s	0.9573 ± 0.0085	0.9631 ± 0.0071	0.9560 ± 0.0085	0.9209 ± 0.0061	0.9613 ± 0.0071	0.9226 ± 0.0055
z_{reio}	7.57 ± 0.76	7.75 ± 0.73	7.56 ± 0.76	7.45 ± 0.67	7.74 ± 0.72	7.48 ± 0.65
$\log_{10}(z_{ m dec})$	—	—	> 5.2 (95%CL)	4.14 ± 0.058	> 5.1 (95%CL)	4.14 ± 0.056
$N_{ m eff}$	2.82 ± 0.18	2.90 ± 0.17	2.84 ± 0.18	2.55 ± 0.14	2.92 ± 0.17	2.57 ± 0.14
$\sum m$	< 0.227 (95%CL)	< 0.108 (95%CL)	< 0.225 (95%CL)	< 0.160 (95% CL)	$< 0.107 \ (95\% CL)$	< 0.108 (95% CL)
$H_0\left[\frac{(\mathrm{km/s})}{\mathrm{Mpc}}\right]$	65.8 ± 1.6	67.2 ± 1.1	65.9 ± 1.7	65.7 ± 1.3	67.3 ± 1.1	66.1 ± 1.0
S_8	0.835 ± 0.013	0.828 ± 0.012	0.835 ± 0.013	0.825 ± 0.013	0.829 ± 0.011	0.821 ± 0.011
$\ln(E)$	-0.5282×10^{3}	-0.5320×10^3	-0.5333×10^{3}	-0.5388×10^3	-0.5370×10^{3}	-0.5418×10^{3}
$E_{ m int}/E_{ m fs}$	—	_	6.1×10^{-3}	2.5×10^{-5}	$6.7 imes 10^{-3}$	5.5×10^{-5}
Best fit						
$N_{ m eff}$	2.846	2.922	2.859	2.572	2.819	2.519
$\log_{10}(z_{ m dec})$	_	_	5.953	4.119	5.997	4.126
$\chi^2_{ m eff}$	1011.08	1016.72	1011.67	1018.35	1016.94	1023.39
$\Delta\chi^2_{ m eff}$	—	_	+0.59	+7.27	+0.22	+6.67


Brinckmann, JHC, and LoVerde, ArXiv:2012.11830

Brinckmann, JHC, and LoVerde, ArXiv:2012.11830


- Unfortunately, this is not true with the most recent data
- CMB polarization data constrain $N_{\rm eff}$ tightly

- Unfortunately, this is not true with the most recent data
- CMB polarization data constrain N_{eff} tightly
- Instead, we put constraints on self-interacting neutrinos

Brinckmann, JHC, and LoVerde, ArXiv:2012.11830

Self-interacting Dark Radiation

Preliminary

- We put constraints on self-interacting radiation for different types
 - Through a heavy mediator $\left(\Gamma \sim \frac{T^5}{\Lambda^4}\right)$: Decoupling
 - ϕ^4 theory ($\Gamma \sim g^2 T$): Recoupling
 - Dark recombination : Instantaneous decoupling
- Constraints depends on model parameters

Conclusions

 Interacting and non-interacting radiations have different effects on observables

 We study constraints on self-interacting neutrinos and self-interacting dark radiations from cosmological data

THANKYOU