Search for New Decays of B Mesons to Charmed Baryons

Mark Farino, Vladimir Savinov (University of Pittsburgh) on behalf of the Belle Collaboration
-Matter and antimatter should have been produced in equal amounts
-CP violation in Standard Model does not fully explain evident matter-antimatter asymmetry
-One of the greatest mysteries in physics

Baryogenesis

In 1967 Andrei Sakharov formulated three necessary conditions for baryogenesis, i.e., asymmetry between matter and anti-matter:

Sakharov's Three Conditions for Baryogenesis

- Baryon number violation
- C and CP violation
- Departure from thermal/chemical equilibrium
"According to our hypothesis, the occurrence of charge asymmetry is the consequence of violation of charge-parity (CP) invariance in the nonstationary expansion of the hot universe during the superdense stage, as manifest in the difference between the partial probabilities of the chargeconjugate reactions"

Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe -Sakharov, A.D. Pisma Zh.Eksp.Teor.Fiz. 5 (1967) 32-35, JETP Lett. 5 (1967) 24-27, Sov.Phys.Usp. 34 (1991) no.5, 392-393, Usp.Fiz.Nauk 161 (1991) no.5, 61-64

C and CP violation have been experimentally observed*

Departure from thermal equilibrium is satisfied by expansion of the universe
Numerous unsuccessful searches for baryon number violation have been performed

[^0]-Recent theoretical assertions suggest baryon number violation could arise from charmed baryon $\Omega_{c}^{0}-\bar{\Omega}_{c}^{0}$ oscillations*
-Hence searching for not yet observed decays $\overline{\mathrm{B}}^{0}->\bar{\Lambda} \Omega_{c}^{o}$ and $\overline{\mathrm{B}}^{0}->\bar{\Lambda}^{0} \Omega_{c}^{* i}$ in data collected at Belle experiment
-First search of this type performed at LHCb (Ξ_{b}^{0} oscillations) ${ }^{* *}$

-used to obtain evidence of CP violation for particles containing heavy b quark
-data could be used to search for baryon number violation

Belle Detector

- B meson decay vertices measured by silicon vertex detector (SVD)
- Charged particle tracking performed by wire drift chamber (CDC)
- Particle identification performed by measurements in CDC, aerogel Cherenkov counters (ACC), and time of flight counters (TOF)

[^1]
Analysis Methodology

Signal Reconstruction

- Standard Belle Λ^{0} candidates are used
$-\Omega^{-}$candidates are then reconstructed by applying a vertex fit and mass constraint to the Λ° candidates, then we use the resulting four-momentum to reconstruct Ω^{-}candidates
Ω_{c}^{0} candidates are reconstructed in a similar fashion to Ω^{-}
- For channel $\overline{\mathrm{B}^{0}}->\overline{\Lambda^{0}} \Omega_{c}^{3_{0}^{0}}$, we do not reconstruct γ from Ω_{c}^{00}

Candidates are required to pass various selection criteria:

1. final state particle candidates are identified using likelihood-based particle identification approach
2. daughter particle candidates are identified using reconstructed invariant masses
3. B^{0} candidates are identified using beam-energy constrained B^{0} mass $\left(M_{\mathrm{bc}}=\sqrt{E_{\text {beam }}^{2}-p_{B^{0}}^{2}}\right)$ and energy difference $\Delta E=E_{B^{0}}-E_{\text {beam }}$

Selection Criteria

Signal Region (red box):
$\mathrm{Mbc}>5.27 \mathrm{GeV} / \mathrm{c}^{2}$ and $-0.07 \mathrm{GeV}<\Delta \mathrm{E}<0.07 \mathrm{GeV}$, contains 98.4% of MC signal

Region Blinded in Data (blue box):

Mbc $>5.26 \mathrm{GeV} / \mathrm{c}^{2}$ and -0.2$) \mathrm{GeV}<\Delta \mathrm{E}<0.1 \mathrm{GeV}$, contains 99.4% of MC signal

Strong correlation present between signal variables (global correlation coefficient in the signal region: -0.23) taken into account using 2D smoothed histograms for PDFs

In the analysis of this channel we ignore radiative photon, this missing energy shifts signal $\Delta \mathrm{E}$ distribution toward negative values but has negligible effect on beam-constrainted B mass

Signal region (red box):
$\mathrm{Mbc}>5.265 \mathrm{GeV} / \mathrm{c}^{2}$ and $-0.145 \mathrm{GeV}<\Delta \mathrm{E}<-0.020 \mathrm{GeV}$, contains 98.2% of MC signal

Blinded region in data (blue box):

$\mathrm{Mbc}>5.26 \mathrm{GeV} / \mathrm{c}^{2}$ and $-0.2 \mathrm{GeV}<\Delta \mathrm{E}<0.1 \mathrm{GeV}$, contains 99.3% of MC signal

- We perform a 2-dimensional extended unbinned maximum likelihood fit to Mbc and $\Delta \mathrm{E}$ to statistically separate our signals from hadronic continuum background arising from e+eannihilation into pairs of light quarks (u, d, s, and c)

$$
\mathcal{L}=\frac{e^{-\sum_{j} n_{j}}}{N!} \prod_{i=1}^{N}\left(\sum_{j} n_{j} \mathcal{P}_{j}\left(M_{\mathrm{bc}}^{i}, \Delta E^{i}\right)\right)
$$

Likelihood Function

- Both signals are modeled by smoothed histograms
- Background is modeled by analytic functions (below)

Mbc modeled with ARGUS function Δ E modeled by first-order Chebyshev polynomial

Fit Parameter	Value \pm Uncertainty
ARGUS parameter	-7.5 ± 18
Fit Parameter	Value \pm Uncertainty
slope coefficient	-0.929 ± 0.14

Estimate for number of background events:
$\#$ of events in blinded data $\times \frac{\text { total genMC }}{\text { genMC in blinded reg. }}=10 \times 39 / 36 \approx \underline{11}$

2D Smoothed Histogram for Channel $\overline{\mathrm{B}}^{0}->\overline{\Lambda^{0}} \Omega_{c}^{0}$

Projections of 2D PDFs are shown after integrating over the other variable:
M_{bc} Smoothed Histogram $\left(\overline{\mathrm{B}^{0}}\right.$-> $\left.\overline{\Lambda^{0}} \Omega_{\mathrm{c}}^{0}\right)$

Δ E Smoothed Histogram ($\overline{\mathrm{B}^{0}}->\overline{\Lambda^{0}} \Omega_{\mathrm{c}}^{0}$)

Projections of 2D PDFs are shown after integrating over the other variable:
-Binning (over full ranges):

- Mbc: 60 bins
- $\Delta \mathrm{E}: 80$ bins

-Interpolation order 2

Overview

- studies performed fitting both signals simultaneously ($\Delta \mathrm{E}$ allows for clear separation between the two signals)
- fitting variables $\Delta \mathrm{E}$ and Mbc (1-D fits are for $\Delta \mathrm{E}$ only) - extensive toy MC experiments have been performed - ensemble tests are used to generate confidence belts

Approach for Data

- first perform a 2D fit
- in the absence of signal, perform a 1D fit to $\Delta \mathrm{E}$
- estimate upper limits for signal branching fractions

Ensemble Test Results Example

number of $\overline{\mathrm{B}^{0}}->\bar{\Lambda}^{0} \Omega_{c}^{0}$ signal events: 20
number of $\overline{\mathrm{B}}^{0}->\bar{\Lambda}^{0} \Omega_{c}^{*}$ signal events: 21
number of background events: 11

Signal-region $\Delta \mathrm{E}$ projection of 2D fit for SM decay

Events sampled from combined PDF: 52, signals/background weights: [20,21]/11

```
Signal-region \(M_{b c}\) projection of 2D fit for BNV decay
```


Signal-region ΔE projection of 2D fit for BNV decay

Events sampled from combined PDF: 13, signals/background weights: $[5,5] / 3$

90\% Confidence Belts

- Boundaries of confidence belts determined by ensemble tests
- 90% of MC results contained within blue region for any given hypothesis
- Belts shown on right for $\overline{\mathrm{B}}^{0}->\bar{\Lambda}^{0} \Omega_{c}^{0}$ (where we integrate over various hypotheses of number of $\overline{\mathrm{B}}^{0} \rightarrow \bar{\Lambda}^{0} \Omega_{c}^{*_{0}^{0}}$ events)
- Can be used to estimate sensitivity of analysis

Upper Limit Estimate Example (Preliminary)

Assume we observe 5 events in data: => 95% upper limit is 9 by confidence belt

$$
\mathcal{B}_{\mathrm{UL}}^{95}\left(\bar{B}^{0} \rightarrow \bar{\Lambda}^{0} \Omega_{c}^{(*) 0}\right)=\frac{9}{N_{B \bar{B}} \times \epsilon \times \rho \times \mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right) \times \mathcal{B}\left(\Omega^{-} \rightarrow \Lambda^{0} K^{-}\right) \times \mathcal{B}\left(\Lambda^{0} \rightarrow p \pi^{-}\right)^{2}}
$$

where

- $N_{B \bar{B}}$ is the number of $B \bar{B}$ pairs,
- ϵ is our reconstruction efficiency for this channel,
- ρ is our PID correction to efficiency
- $\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)$is our estimate of the branching fraction for $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$,
- $\mathcal{B}\left(\Omega^{-} \rightarrow \Lambda^{0} K^{-}\right)$is the branching fraction for $\Omega^{-} \rightarrow \Lambda^{0} K^{-}$,
- $\mathcal{B}\left(\Lambda^{0} \rightarrow p \pi^{-}\right)$is the branching fraction for $\Lambda^{0} \rightarrow p \pi^{-}$(hence squared because the decay has two Λ^{0} candidates).

$$
\mathcal{B}_{\mathrm{UL}}^{95}\left(\bar{B}^{0} \rightarrow \bar{\Lambda}^{0} \Omega_{c}^{(*) 0}\right)=\frac{9}{\left(772 \times 10^{6}\right) \times 0.1222 \times 0.9840 \times 0.0143 \times 0.678 \times 0.639^{2}}=\underline{2.4 \times 10^{-5}}
$$

-The analysis is being checked by the internal committee
-Investigating systematic uncertainties
-Will request signal box unblinding and report findings very soon
-The reasons for matter-antimattery asymmetry remain to be understood

- A discovery of BNV would be a huge leap forward in understanding baryogenesis
- Presented first search for decays $\overline{\mathrm{B}^{0}}->\bar{\Lambda}^{0} \Omega_{c}^{0}$ and $\overline{\mathrm{B}}^{0}->\bar{\Lambda}^{0} \Omega_{c}^{*}$ in Belle data
- Expect a branching fraction sensitivity of $\sim 2 \times 10^{-5}$
- Sensitivity with Belle II would improve by a factor of 3 (assuming 10 times Belle data)

[^0]: * CP Violation discovery: J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay (1964), Phys. Rev. Lett. 13, 138

 Observation of large CP violation in the neutral B meson system: Abe K., et al. Belle Collaboration (2001), Phys. Rev. Lett. 87, 091802 C (and P) are both maximally violated in weak interactions

[^1]: A. Abashian et al. [Belle], "The Belle Detector," Nucl. Instrum. Meth. A 479, 117-232 (2002) doi:10.1016/S0168-9002(01)02013-7

