Constraining anomalous Higgs boson couplings to virtual photons.

Jeffrey Davis Phenomenology 2022 5/10/2022 Based on work in <u>arxiv:2109.13363</u>

JOHNS HOPKINS UNIVERSITY

JHUGen Framework

See Talks: <u>H. Roskes at LHC EFT WG</u>

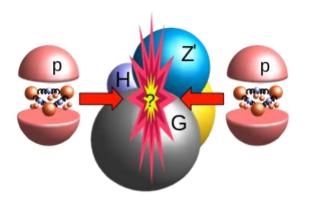
H. Roskes at Pheno 2020 M. Xiao at ICHEP 2020

U. Sarica at Higgs 2020

JHUGenerator

https://spin.pha.jhu.edu/

<u>A. Gritsan at LHC Higgs WG</u> M. Schulze at LHC Higgs WG


Simulate wide range of processes involving spin 0,1,2 particles with a general coupling model

JHUGen MELA – Matrix Element Likelihood Approach Calculate observables to optimally isolate processes or operators Reweight generated samples from one hypothesis to another

JHUGenLexicon

Tool for translation between different EFT bases and the JHUGen amplitude

basis convention

***	***************************************	***
*	JHU Generator v7.5.1	*
***	***************************************	***
*		*
*	Spin and parity determination of single-produced resonances at hadron colliders	*
*	I. Anderson, S. Bolognesi, F. Caola, J. Davis, Y. Gao, A. V. Gritsan,	*
*	L. S. Mandacaru Guerra, Z. Guo, C. B. Martin, T. Martini, K. Melnikov, R. Pan,	*
R.	. Rontsch, J. Roskes, U. Sarica, M. Schulze, N. V. Tran, A. Whitbeck, M. Xiao, Y. Zh	ou
*	Phys.Rev. D81 (2010) 075022; arXiv:1001.3396 [hep-ph],	*
*	Phys.Rev. D86 (2012) 095031; arXiv:1208.4018 [hep-ph],	*
*	Phys.Rev. D89 (2014) 035007; arXiv:1309.4819 [hep-ph],	*
*	Phys.Rev. D94 (2016) 055023; arXiv:1606.03107 [hep-ph],	*
*	Phys.Rev. D102 (2020) 056022; arXiv:2002.09888 [hep-ph],	*
*	Phys.Rev. D102 (2021) 055045; arXiv:2104.04277 [hep-ph].	*
*	arXiv:2109.13363 [hep-ph].	*
*		*

Anomalous Couplings and EFT

 $\begin{aligned} \text{HVV couplings parameterized by tensor structures which allow for modelling of any} \\ \text{EFT effects} \\ A(HVV) = \frac{1}{v} \left\{ M_V^2 \left(g_1^{VV} + \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_2^2}{\left(\Lambda_1^{VV}\right)^2} + \frac{\kappa_3^{VV} (q_1 + q_2)^2}{\left(\Lambda_Q^{VV}\right)^2} + \frac{2q_1 \cdot q_2}{M_V^2} g_2^{VV} \right) (\varepsilon_1 \cdot \varepsilon_2) \\ -2g_2^{VV} (\varepsilon_1 \cdot q_2)(\varepsilon_2 \cdot q_1) - 2g_4^{VV} \varepsilon_{\varepsilon_1 \varepsilon_2 q_1 q_2} \right\}. \end{aligned}$

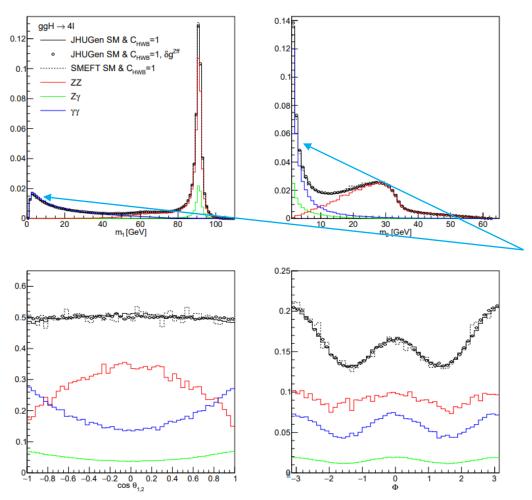
Using JHUGenLexicon we can map these amplitude couplings to any other EFT basis we want:

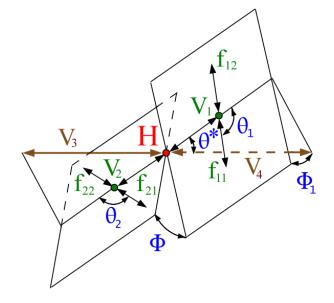
Enforce SU(2) x U(1) to translate between Amplitude basis and EFT bases

$$\begin{split} \delta g_{1}^{ZZ} &= \frac{v^{2}}{\Lambda^{2}} \left(2C_{H\Box} + \frac{6e^{2}}{s_{w}^{2}} C_{HWB} + \left(\frac{3c_{w}^{2}}{2s_{w}^{2}} - \frac{1}{2} \right) C_{HD} \right), \\ \kappa_{1}^{ZZ} &= \frac{v^{2}}{\Lambda^{2}} \left(-\frac{2e^{2}}{s_{w}^{2}} C_{HWB} + \left(1 - \frac{1}{2s_{w}^{2}} \right) C_{HD} \right), \\ g_{2}^{ZZ} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + c_{w}^{2} C_{HW} + s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{ZZ} &= -2\frac{v^{2}}{\Lambda^{2}} \left(s_{w}^{2} C_{HB} + c_{w}^{2} C_{HW} + s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{Z\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(s_{w}^{2} C_{HB} + c_{w}^{2} C_{HW} + s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{Z\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(s_{w} c_{w} \left(C_{HW} - C_{HB} \right) + \frac{1}{2} \left(s_{w}^{2} - c_{w}^{2} \right) C_{HWB} \right), \\ g_{2}^{\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(s_{w} c_{w} \left(C_{HW} - C_{HB} \right) + \frac{1}{2} \left(s_{w}^{2} - c_{w}^{2} \right) C_{HWB} \right), \\ g_{2}^{\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW} - s_{w} c_{w} C_{HWB} \right), \\ g_{2}^{q\gamma\gamma} &= -2\frac{v^{2}}{\Lambda^{2}} \left(c_{w}^{2} C_{HB} + s_{w}^{2} C_{HW$$

5/10/2022

External Constraints

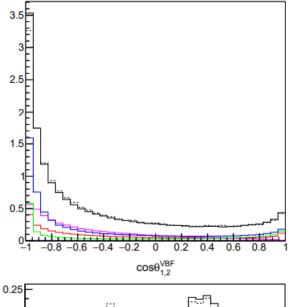

 M_W and Zff couplings could be affected by EFT operators

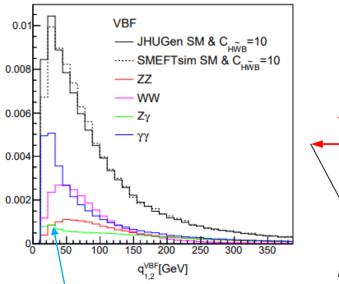

- EW precision measurements tightly constrain these shifts
- Allowed range much smaller than sensitivity of Higgs measurements Can constrain both Zff and M_W to SM within our framework

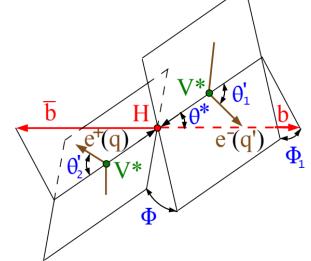
L	eads to rela	tions 🛾				δg_1^{ZZ}	$= \frac{v^2}{\Lambda^2} \Big($	$2C_{H\square}$	$+ \frac{6e^2}{s_w^2}C$	$C_{HWB} +$	$-\left(\frac{3c_w^2}{2s_w^2}\right)$	$-\frac{1}{2}$ C_{HD}
							7 1 -		s_w		$\langle 2s_w^2$	2))
	$\delta g_1^{ZZ} = \delta g_1^{WW}$	κ_1^{ZZ}	g_2^{ZZ}	$g_2^{Z\gamma}$	$g_2^{\gamma\gamma}$	g_4^{ZZ}	$g_4^{Z\gamma}$	$g_4^{\gamma\gamma}$	$\kappa_2^{Z\gamma}$	κ_1^{WW}	g_2^{WW}	g_4^{WW}
$c_{H\square}$	0.1213	0	0	0	0	0	0	0	0	0	0	0
c_{HD}	0.2679	-0.0831	0	0	0	0	0	0	-0.1320	-0.1560	0	0
c_{HW}	0	0	-0.0929	-0.0513	-0.0283	0	0	0	0	0	-0.1212	0
c_{HWB}	0.1529	-0.0613	-0.0513	0.0323	0.0513	0	0	0	0.1763	0.0360	0	0
c_{HB}	0	0	-0.0283	0.0513	-0.0929	0	0	0	0	0	0	0
$c_{H\bar{W}}$	0	0	0	0	0	-0.0929	-0.0513	-0.0283	0	0	0	-0.1212
C _{HWB}	0	0	0	0	0	-0.0513	0.0323	0.0513	0	0	0	0
$c_{H\bar{B}}$	0	0	0	0	0	-0.0283	0.0513	-0.0929	0	0	0	0

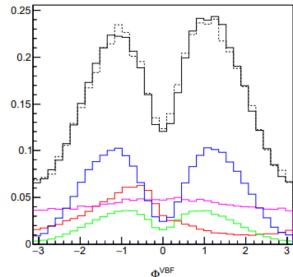
Above: A numerical example of the relationship between the $C_{HX} = 1$ and mass eigenstate amplitude basis used in our analysis

Photons in $H \rightarrow 4I$

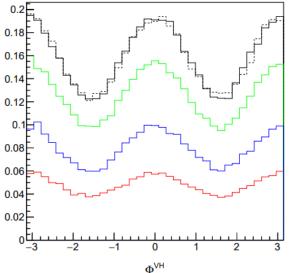

Anomalous photon couplings introduces contributions at low q^2


Example: Simulate SM & c_{HWB} = 10


JHUGen (Amplitude basis) kinematic distributions equivalent to SMEFTSim (Warsaw Basis) with the proper rotation using JHUGenLexicon


 $c_{HWB} = -0.0513g_2^{ZZ} - 0.0323g_2^{Z\gamma} - 0.0513g_2^{\gamma\gamma}$

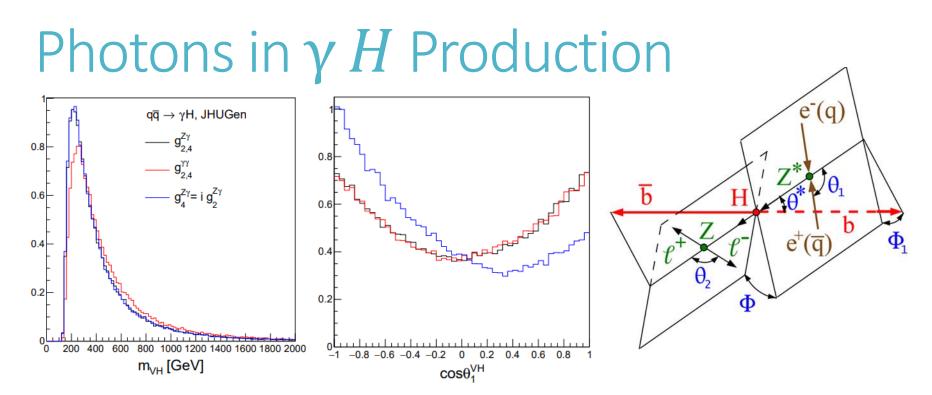
Photons in VBF Higgs Production


Anomalous photon couplings introduce enhanced $\gamma\gamma$ and $Z\gamma$ fusion contributions at low q^2

Example: Simulate VBF with SM Couplings & $C_{H\widetilde{W}B}$ = 10

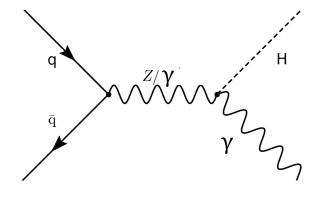
$$C_{H\widetilde{W}B} = -0.0513g_4^{ZZ} + 0.0323g_4^{Z\gamma} + 0.0513g_4^{\gamma\gamma}$$

6


Photons in Z/γ^*H Production 0.03 $e^{-}(q)$ 0.45F VH, $V \rightarrow I^{\dagger}I^{\dagger}$ 0.025 0.4 0.35 ····· SMEFTsim SM & C_{HB}=100 0.02 $\overline{\mathbf{b}}$ 0.3 – ZZ Zγ 0.25 0.015 h YΥ 0.2 $e^{+}(\overline{q})$ 0.01 0.15 0.1 0.005 Φ 0.05 400 600 800 1000 1200 1400 1600 1800 20 40 60 80 100 120 140 160 180 200 m_{vH}[GeV] m_[GeV] 0.2

Anomalous photon couplings introduce $\gamma^* H$ contributions at low q^2

Example: Simulate Z/γ^*H with SM Couplings & C_{HB} = 100


$$C_{HB} = -0.0283g_2^{ZZ} + 0.0513g_2^{Z\gamma} - 0.0929g_2^{\gamma\gamma}$$

Anomalous photon couplings greatly increase rate of γ *H* production

Signal is a Higgs with high pT photon

Unable to distinguish between real valued CP-Even and CP-Odd couplings

EFT Analysis

Measure Higgs cross sections as a function of anomalous couplings

$$\left(\begin{array}{c} \frac{d \,\sigma(i \to H \to f)}{d \vec{\Omega}} & \left(\sum \alpha_{jk}^{(i)} a_j a_k \right) \left(\sum \alpha_{lm}^{(f)} a_l a_m \right) \\ & \left(\frac{\Gamma_{\text{tot}}}{\Gamma_{\text{tot}}} \right) \\ \end{array} \right)$$

Maximum likelihood calculated for EFT hypothesis to match measured cross section/kinematic distributions

 α are functions of kinematic observables $\overline{\Omega}$ factorized into both production and decay components

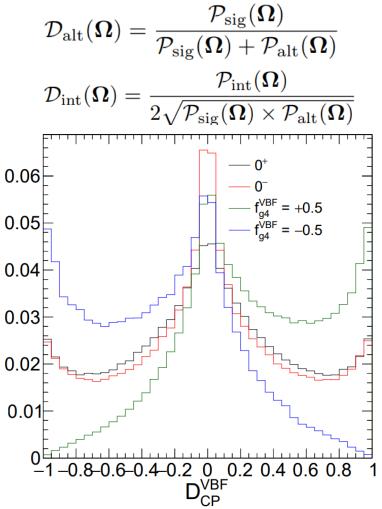
 Γ_{tot} purely dependent on anomalous couplings

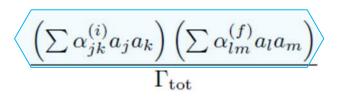
Higgs Width Calculation

$$\sigma(i \to H \to f) \propto \frac{\left(\sum \alpha_{jk}^{(i)} a_j a_k\right) \left(\sum \alpha_{lm}^{(f)} a_l a_m\right)}{\left(\Gamma_{\text{tot}}\right)}$$

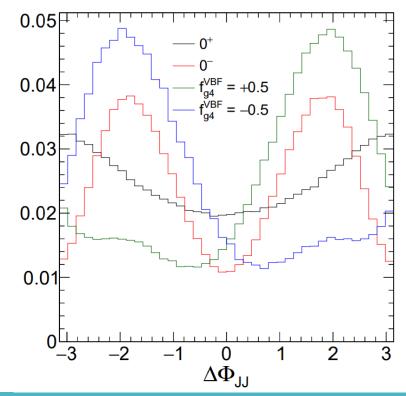
Total width directly dependent on anomalous couplings

Full analytic formulas are calculated for each R_f including photon couplings

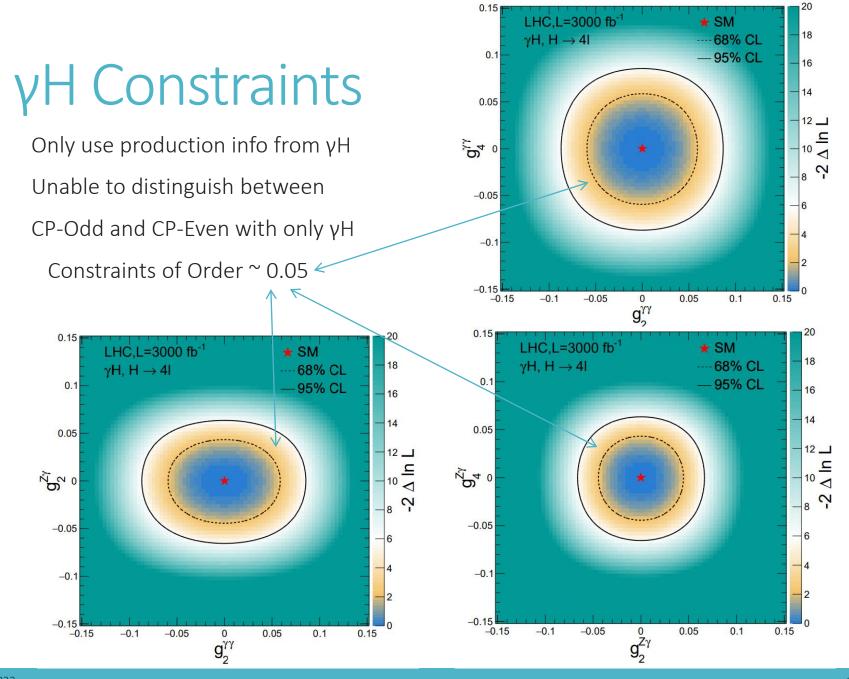

 R_f dependent on q^2 cutoff


Values shown for $q^2 > (2m_f)^2$

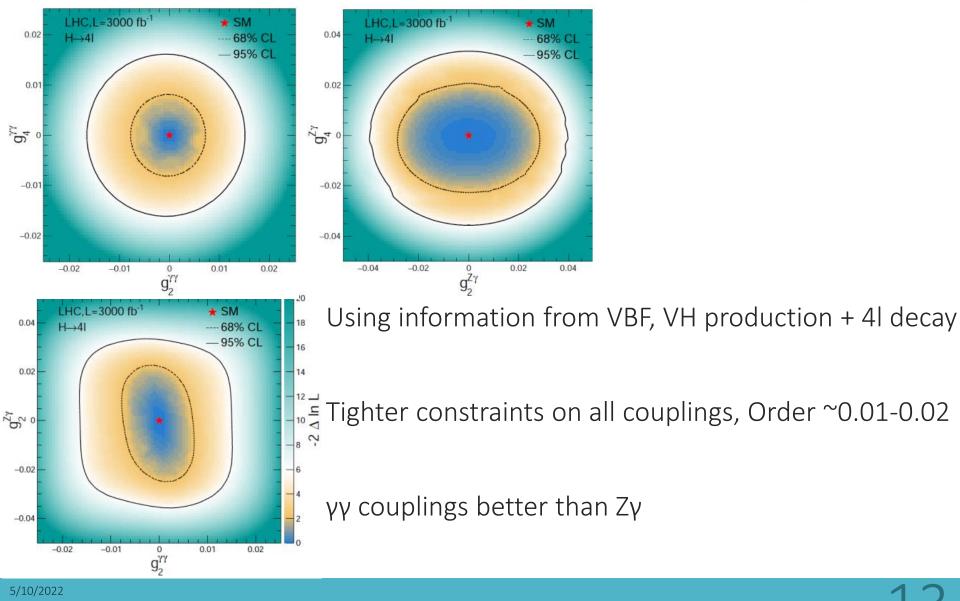
 $\Gamma_{\rm known} = \Gamma_{\rm tot}^{\rm SM} \times \sum_{f} \left(\frac{\Gamma_{f}^{\rm SM}}{\Gamma_{\rm tot}^{\rm SM}} \times \frac{\Gamma_{f}}{\Gamma_{f}^{\rm SM}} \right) = \sum_{f} \Gamma_{f}^{\rm SM} R_{f}$ (Function of anomalous couplings) $f = bb, c\bar{c}, W^+W^-, qq, \tau^+\tau^-, ZZ/Z\gamma^*/\gamma^*\gamma^*$ $R_{ZZ/Z\gamma^{*}/\gamma^{*}\gamma^{*}} = \left(\frac{g_{1}^{ZZ}}{2}\right)^{2} + 0.17\left(\kappa_{1}^{ZZ}\right)^{2} + 0.09\left(g_{2}^{ZZ}\right)^{2} + 0.04\left(g_{4}^{ZZ}\right)^{2} + 0.10\left(\kappa_{2}^{Z\gamma}\right)^{2}$ $+79.95 \left(g_2^{Z\gamma}\right)^2 + 75.23 \left(g_4^{Z\gamma}\right)^2 + 29.00 \left(g_2^{\gamma\gamma}\right)^2 + 29.47 \left(g_4^{\gamma\gamma}\right)^2$ $+0.81\frac{g_{1}^{ZZ}}{2}\kappa_{1}^{ZZ}+0.50\frac{g_{1}^{ZZ}}{2}g_{2}^{ZZ}+0\times\frac{g_{1}^{ZZ}}{2}g_{4}^{ZZ}-0.19\frac{g_{1}^{ZZ}}{2}\kappa_{2}^{Z\gamma}$ $-1.56\frac{g_1^{ZZ}}{2}g_2^{Z\gamma} + 0 \times \frac{g_1^{ZZ}}{2}g_4^{Z\gamma} + 0.06\frac{g_1^{ZZ}}{2}g_2^{\gamma\gamma} + 0 \times \frac{g_1^{ZZ}}{2}g_4^{\gamma\gamma}$ $+0.21\kappa_{1}^{ZZ}g_{2}^{ZZ}+0\times\kappa_{1}^{ZZ}g_{4}^{ZZ}-0.07\kappa_{1}^{ZZ}\kappa_{2}^{Z\gamma}-0.64\kappa_{1}^{ZZ}g_{2}^{Z\gamma}$ $+0 \times \kappa_1^{ZZ} q_4^{Z\gamma} + 0.00 \kappa_1^{ZZ} q_2^{\gamma\gamma} + 0 \times \kappa_1^{ZZ} q_4^{\gamma\gamma} + 0 \times q_2^{ZZ} q_4^{ZZ}$ $-0.05q_2^{ZZ}\kappa_2^{Z\gamma} - 0.51q_2^{ZZ}q_2^{Z\gamma} + 0 \times q_2^{ZZ}q_4^{Z\gamma} - 0.02q_2^{ZZ}q_2^{\gamma\gamma}$ $+0 \times q_{2}^{ZZ} q_{4}^{\gamma\gamma} + 0 \times q_{4}^{ZZ} \kappa_{2}^{Z\gamma} + 0 \times q_{4}^{ZZ} g_{2}^{Z\gamma} + 0.36 g_{4}^{ZZ} g_{4}^{Z\gamma}$ $+0 \times q_{4}^{ZZ} q_{2}^{\gamma\gamma} - 0.57 q_{4}^{ZZ} q_{4}^{\gamma\gamma} + 1.80 \kappa_{2}^{Z\gamma} q_{2}^{Z\gamma} + 0 \times \kappa_{2}^{Z\gamma} q_{4}^{Z\gamma}$ $-0.05\kappa_{2}^{Z\gamma}g_{2}^{\gamma\gamma} + 0 \times \kappa_{2}^{Z\gamma}g_{4}^{\gamma\gamma} + 0 \times g_{2}^{Z\gamma}g_{4}^{Z\gamma} - 1.84g_{2}^{Z\gamma}g_{2}^{\gamma\gamma}$ $+0 \times q_2^{Z\gamma} q_4^{\gamma\gamma} + 0 \times q_4^{Z\gamma} q_2^{\gamma\gamma} - 2.09 q_4^{Z\gamma} q_4^{\gamma\gamma} + 0 \times q_2^{\gamma\gamma} q_4^{\gamma\gamma}$


MELA Observables

- Events have many kinematic observables
- We construct observables that utilize all kinematic information

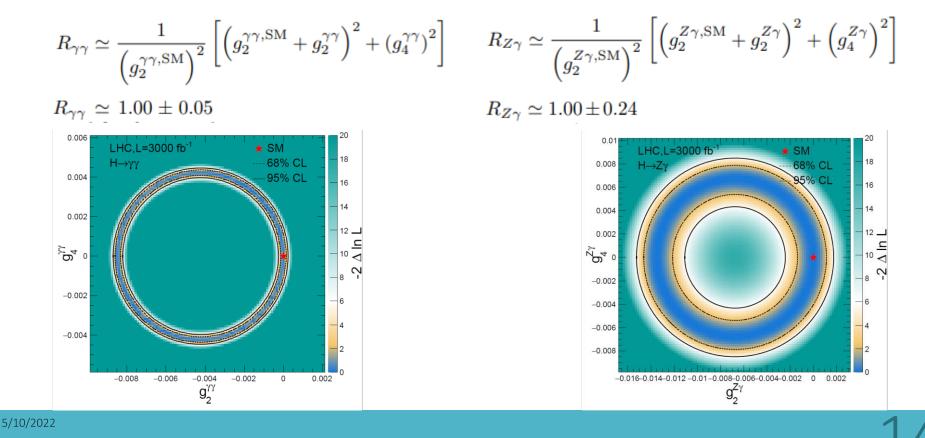


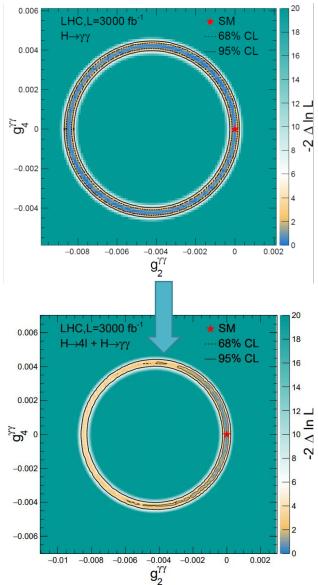
MELA calculates optimal observables from matrix elements to distinguish between various anomalous coupling hypotheses

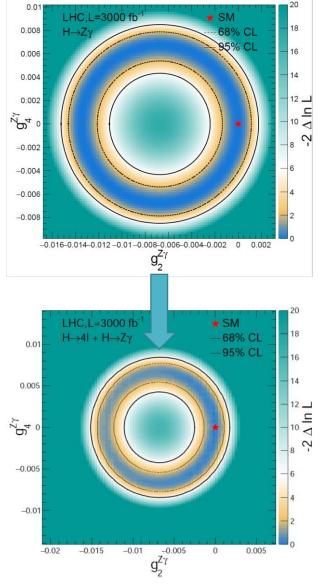


5/10/2022

5/10/2022


Constraints: Production + Decay


Constraints from Decays with On-Shell photons


Measurements of the rate of H $\to \gamma\gamma$ and H $\to Z\gamma$ can be used to constrain anomalous Hyy and HZy couplings

Expected constraints taken from Higgs Working Group 2 Report arxiv:1902.00134

Full Combination: H-> 4I and H-> γγ, Ζγ

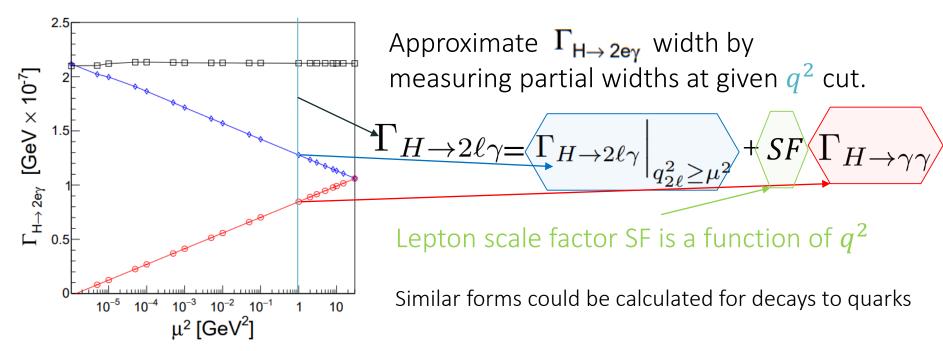
5/10/2022

Conclusion

To increase sensitivity of Higgs coupling to virtual photons, need to push q^2 of analysis as low as possible

Calculated Γ_H as a function of anomalous couplings

Measuring γH cross section can provide decent constraints on virtual photon couplings


Using full information from VBF, VH production and $H\rightarrow$ 4l decay provides the tightest constraints from HVV measurements

Total Width Calculation

Higgs decay to fermions through virtual photons have sharp peaks for small $q^2 = (p_{f+} + p_{f-})^2$

Developed procedure to handle singularities at low q^2

For details on derivation see <u>arxiv:2109.13363</u>

5/10/2022

$$\begin{array}{ll} \textbf{Analytic Decay Rates} \\ R_{\gamma\gamma} = & 1.60932 \left(\frac{g_{1}^{WW}}{2}\right)^{2} - 0.69064 \left(\frac{g_{1}^{WW}}{2}\right) \kappa_{t} + 0.00912 \left(\frac{g_{1}^{WW}}{2}\right) \kappa_{b} - 0.49725 \left(\frac{g_{1}^{WW}}{2}\right) (N_{c} Q^{2} \kappa_{\mathcal{Q}}) \\ & + 0.07404 \kappa_{t}^{2} + 0.00002 \kappa_{b}^{2} - 0.00186 \kappa_{t} \kappa_{b} \\ & + 0.03841 \left(N_{c} Q^{2} \kappa_{\mathcal{Q}}\right)^{2} + 0.10666 \kappa_{t} \left(N_{c} Q^{2} \kappa_{\mathcal{Q}}\right) - 0.00136 \kappa_{b} \left(N_{c} Q^{2} \kappa_{\mathcal{Q}}\right) \\ & + 0.20533 \tilde{\kappa}_{t}^{2} + 0.00006 \tilde{\kappa}_{b}^{2} - 0.00300 \tilde{\kappa}_{t} \tilde{\kappa}_{b} \\ & + 0.10252 \left(N_{c} Q^{2} \tilde{\kappa}_{Q}\right)^{2} + 0.29018 \tilde{\kappa}_{t} \left(N_{c} Q^{2} \tilde{\kappa}_{\mathcal{Q}}\right) - 0.00202 \tilde{\kappa}_{b} \left(N_{c} Q^{2} \tilde{\kappa}_{\mathcal{Q}}\right) . \\ g_{2}^{\gamma\gamma,\mathcal{Q}} = -\frac{\alpha}{3\pi} N_{c} Q^{2} \kappa_{\mathcal{Q}}, \qquad g_{4}^{\gamma\gamma,\mathcal{Q}} = -\frac{\alpha}{2\pi} N_{c} Q^{2} \tilde{\kappa}_{\mathcal{Q}}. \end{array}$$

 $R_{\gamma\gamma}$ can be cast in terms of anomalous photon couplings

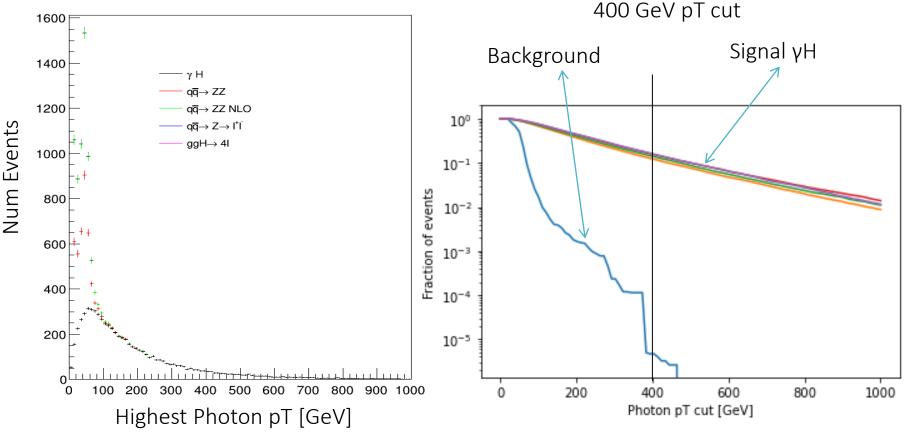
- Fix HWW couplings to SM value
- Fix Hff couplings to SM value

$$R_{\gamma\gamma} \simeq \frac{1}{\left(g_2^{\gamma\gamma, \rm SM}\right)^2} \left[\left(g_2^{\gamma\gamma, \rm SM} + g_2^{\gamma\gamma}\right)^2 + \left(g_4^{\gamma\gamma}\right)^2 \right]$$

Higgs production with photon (γ H) To date there has been no search for γ H(125) production at LHC or LEP

γH production has extremely low SM cross-section

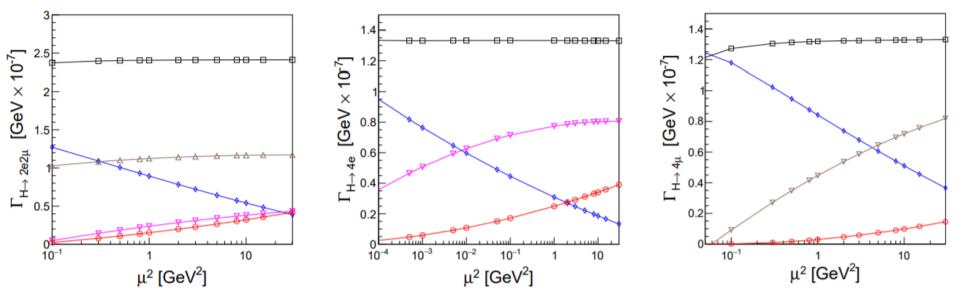
- ~.1 events expected with entire LHC and HL-LHC dataset


Anomalous HZy and Hyy couplings dramatically enhance expected yH yield above SM for relatively small coupling values

$$\frac{\sigma(q\bar{q} \rightarrow \gamma H)}{\sigma_{\text{ref}}^{\gamma H}} = \left(g_2^{Z\gamma}\right)^2 + \left(g_4^{Z\gamma}\right)^2 + 0.553 \left(g_2^{\gamma\gamma}\right)^2 + 0.553 \left(g_4^{\gamma\gamma}\right)^2 - 0.578 g_2^{Z\gamma} g_2^{\gamma\gamma} - 0.578 g_4^{Z\gamma} g_4^{\gamma\gamma}$$

$$\sigma_{\text{ref}}^{\gamma H} = 1.33 \times 10^4 \,\text{fb}.$$
For $g_2^{Z\gamma} = 1$, expect ~ 2 × 10⁵ events

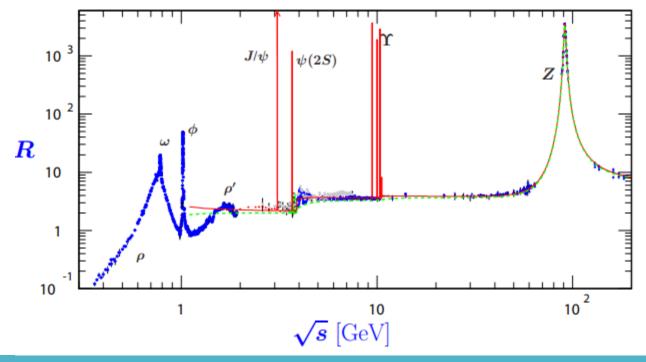
γH Background


Main Sources of background are ggH and qqZZ qqbar->ZZ/Z γ *->4l background is generated with POWHEG + Pythia hadronization.

20

Total Width Calculation

$$\begin{split} \Gamma_{H \to 2\ell 2\ell'} &= \left. \Gamma_{H \to 2\ell 2\ell'} \right|_{q_{2\ell}^2 \ge \mu^2, q_{2\ell'}^2 \ge \mu^2} \\ &+ \frac{\alpha}{2\pi} \left[\frac{2}{3} \log \left(\frac{\mu_{\ell}^2}{m_{\ell}^2} \right) - \frac{10}{9} \right] \left. \Gamma_{H \to 2\ell' \gamma} \right|_{q_{2\ell'}^2 \ge \mu^2} + \frac{\alpha}{2\pi} \left[\frac{2}{3} \log \left(\frac{\mu_{\ell'}^2}{m_{\ell'}^2} \right) - \frac{10}{9} \right] \left. \Gamma_{H \to 2\ell \gamma} \right|_{q_{2\ell}^2 \ge \mu^2} \\ &+ \left(\frac{\alpha}{2\pi} \right)^2 \left[\frac{2}{3} \log \left(\frac{\mu_{\ell}^2}{m_{\ell}^2} \right) - \frac{10}{9} \right] \left[\frac{2}{3} \log \left(\frac{\mu_{\ell'}^2}{m_{\ell'}^2} \right) - \frac{10}{9} \right] \left. 2 \Gamma_{H \to \gamma\gamma} + \mathcal{O}(\mu^2 / M_H^2), \end{split}$$


21

10/6/2021

Total Width Calculation

Similarly, we can use this procedure for decays to quarks $\Gamma_{H\to 2j\gamma} = \Gamma_{H\to 2j\gamma} \Big|_{q_{2q}^2 \ge \mu^2} + \left[\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) + \frac{\alpha}{\pi} \frac{11}{9} \log\left(\frac{\mu^2}{M_Z^2}\right) \right] 2\Gamma_{H\to \gamma\gamma} + \mathcal{O}(\mu^2/M_Z^2)$

Hadron form factor unknown/ hard to derive (resonances)

