Simulating 3+1 Dimension Schwinger Pair Production with Quantum Computers

Bin Xu (binxu@ufl.edu) University of Florida

ArXiv: 2112.06863, in collaboration with Wei Xue

> Phenomenology 2022 Symposium May 10, 2022

Motivation

- There are problems too hard to solve analytically, e.g. quantum chromodynamics (QCD).
- There are limitations of classical computations, e.g. the sign problem in lattice QCD.
- Quantum computers can simulate the real time dynamics of such highly entangled systems, hence solve the sign problem.

Motivation

```
Why do we simulate the Schwinger effect?
```

- The Schwinger effect is a very well understood phenomenon of QED in which electron-positron pairs are spontaneously created in the presence of an electric field.
- It has never been directly observed due to the extremely strong electric-field strengths required. (The Schwinger limit: $\left.E_{c} \simeq 10^{18} \mathrm{~V} / \mathrm{m}\right)$
- It is a non-perturbative effect of vacuum decay. This makes this elusive effect of great interest for other theories, such as QCD and gravitational physics.

Theoretical Setup

Momentum factorization

- Suppose the electric field is along z-direction, we decompose the Fermion field in Fourier space transverse to the electric field direction

$$
\psi(\mathbf{x})=\int \frac{d p_{x} d p_{y}}{(2 \pi)^{2}} e^{i\left(p_{x} x+p_{y} y\right)} \sum_{s} \psi_{s}\left(p_{x}, p_{y}, z\right)
$$

- The Hamiltonian is factorized to be

$$
H=\int d^{3} x \bar{\psi}(-i \vec{\gamma} \cdot \nabla+m) \psi=\int \frac{d p_{x} d p_{y}}{(2 \pi)^{2}} \sum_{s} H_{s}\left(p_{x}, p_{y}, z\right)
$$

where $H_{s}\left(m ; p_{x}, p_{y}, z\right) \simeq H_{1+1}\left(m^{\prime}=\sqrt{m^{2}+p_{x}^{2}+p_{y}^{2}} ; z\right)$ with a unitary transformation.

Theoretical Setup

Spatial discretization

- Discretize the space along z-axis to N sites with spacing a $L_{z}=N a, z=n a,(n=0,1, \ldots, N-1)$.
- Staggered Fermion (the Kogut-Susskind formulation): put the upper (lower) components of the spinor on the even (odd) lattice points.

$$
\phi(n) / \sqrt{a} \rightarrow \begin{cases}\psi_{\text {upper }}(x), & n \text { even } \\ \psi_{\text {lower }}(x), & n \text { odd }\end{cases}
$$

- Periodic boundary condition: $\phi(n+N)=\phi(n)$

Theoretical Setup

Reduction by Parity

unoccupied electron (odd)
occupied positron (even)
$-=|1\rangle$:
occupied electron (odd) unoccupied positron (even)

The system H is invariant under the parity transformation:

$$
P: \phi(m) \rightarrow(-1)^{m} \phi(N-m)
$$

Theoretical Setup

Reduction by Parity

The system H is invariant under the parity transformation:

Define the parity even and odd fields

$$
\phi_{ \pm}(m)=\frac{\phi(m) \pm(-1)^{m} \phi(N-m)}{\sqrt{2}}
$$

The Hamiltonian is further divided into two parts

$$
P: \phi(m) \rightarrow(-1)^{m} \phi(N-m) \quad H=H_{+}+H_{-}
$$

Description of Algorithms

(1) Prepare the ground state of the Hamiltonian with both the electric field and the nearest-neighbor lattice-site interactions turned off, which is $|10101\rangle$ for H_{+}and $|01010\rangle$ for H_{-}.
(2) Adiabatic turn on the nearest-neighbor lattice site interactions or using the Variational Quantum Eigensolver (VQE) method to find the ground state of the free Hamiltonian.
(3) Evolve in time, via Suzuki-Trotter formulae, according to the full Hamiltonian. It is during this time evolution that pair production may occur.
(9) Adiabatically turn off the nearest-neighbor lattice site interactions or apply the inverse VQE method.
(5) Measure the persistence probability of the ground state.

Schwinger pair production results (1+1D)

For a particular choice of the parameters (natural units): $m=1, a=0.45, e E=20$, we get $\Gamma=4.37$, while QED predicts $\Gamma=4.22$.

$$
m^{\prime}=1.4
$$

Schwinger pair production results (3+1D)

- Integrating over the transverse momentum gives the pair production rate in $(3+1) \mathrm{D}: \Gamma_{3+1}(m)=2 \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \Gamma_{1+1}\left(m^{\prime}=\sqrt{m^{2}+p_{\perp}^{2}}\right)$
- Theoretical predication of QED gives $\Gamma_{3+1}=0.58$, while corrected quantum computer result gives $\Gamma_{3+1}=0.60$.

Conclusions

- We developed and implemented a novel quantum algorithm of simulating the $3+1 D$ Schwinger effect on a 5 -qubit quantum computer.
- We introduced several techniques to simplify and parallelize the quantum simulation, such as background field method, dimension reduction, parity symmetry.
- Hardware errors are relieved by constraining to the charge-conserving subspace.
- With slight modifications, the algorithm can be applied to other particle generation processes such as reheating after inflation, black hole superradiance, etc.

Thank you!

Backup slides

Trotter-Suzuki Formulae

Express the Hamiltonian as a sum of easy to simulate Hamiltonians, then approximate the total evolution as a sequence of these simpler evolutions:

$$
e^{-i \sum_{j=1}^{m} H_{j} t}=\left(\prod_{j=1}^{m} e^{-i H_{j} t / n_{t}}\right)^{n_{t}}+O\left(m^{2} t^{2} / n_{t}\right)
$$

For our system, $H_{+}=H_{+1}+H_{+2}+H_{+3}$, where

$$
\begin{aligned}
& H_{+1}=\sum_{n=0}^{4}\left[(-1)^{n} m+e \operatorname{Ean}\right] \frac{\sigma_{3}(n)}{2} \\
& H_{+2}=\frac{1}{\sqrt{2} a}\left[\sigma^{+}(0) \sigma^{-}(1)+\sigma^{+}(1) \sigma^{-}(0)\right]+\frac{1}{2 a}\left[\sigma^{+}(2) \sigma^{-}(3)+\sigma^{+}(3) \sigma^{-}(2)\right] \\
& H_{+3}=\frac{1}{2 a} \sum_{n=1,3}\left[\sigma^{+}(n) \sigma^{-}(n+1)+\sigma^{+}(n+1) \sigma^{-}(n)\right]
\end{aligned}
$$

Demonstration of circuits

Real time evolution

Demonstration of circuits

The VQE ansatz

Error Analysis

- Discretization error
- Truncation error
- Trotterizarion error
- Diabatic error
- Statistical error
- Hardware noise

