Exploring Strange Origin of Dirac Neutrino Masses at Hadron Colliders

Phys.Rev.D 105 (2022) 7, 075017, arxiv:2111.08020

Matthew Sullivan¹, Hooman Davoudiasl¹, Ian M. Lewis²

> ¹Brookhaven National Laboratory ²University of Kansas

> > Pheno 2022, May 9

Neutrino Oscillations

					N. FIT 5 4 (0004)
					NuFIT 5.1 (2021)
		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.6$)	
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \to 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \to 0.02434$
	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{\mathrm{CP}}/^{\circ}$	194^{+52}_{-25}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498^{+0.028}_{-0.029}$	$-2.584 \rightarrow -2.413$
with SK atmospheric data		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 7.0$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.45^{+0.77}_{-0.75}$	$31.27 \rightarrow 35.87$	$33.45^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.450^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$
	$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$
	$\sin^2 \theta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \to 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \to 0.02457$
	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61^{+0.14}_{-0.12}$	$8.24 \rightarrow 9.02$
	$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$
	$\frac{\Delta m^2_{21}}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$

JHEP 09 (2020) 178, www.nu-fit.org

- Neutrino oscillations are well-described by the three-flavor oscillation framework
- Implies that (at least two) neutrino masses are non-zero
- The mass squared differences are sub-eV scale

Neutrino Masses

- "The Standard Model" does not include right-handed singlet neutrino fields, and so has massless neutrinos
 - With right-handed singlet neutrinos, the mass-generating terms would be allowed
- \bullet Cosmological bounds place an upper limit on the sum of neutrino masses of $\sim 0.12~\text{eV}$
- Why do neutrinos have such extremely small masses?

A Different Approach to Neutrino Masses

- We will accept the existence of right-handed singlet neutrinos to support Dirac neutrino masses
- The following effective operator, with Standard Model and singlet neutrino fields only, can generate Dirac neutrino mass:

$$O_D = \zeta \frac{[\bar{Q}^i \, s] \epsilon^{ij} [\bar{L}^j \, \nu_R]}{M_D^2} + \text{H.C.}$$
 (1)

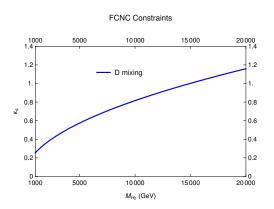
- ullet The light quark condensates $\langle ar q q
 angle \sim -(300~{
 m MeV})^3$ provides EWSB
- ullet Generating ~ 0.1 eV neutrino masses requires $M_D \sim 16$ TeV
 - π^+ , K^+ decays to $e^+\nu$ constrain similar scale operators with d and u quarks, thus necessitating the use of the strange quark
- So: how can we generate this sort of operator?

Our 2HDM Model

- We use two Higgs doublets: H_1 and H_2
- H₁ will be the sole doublet that gets a vev
 - \bullet It generates quark, charged lepton, W/Z masses exactly as in the SM
 - We'll work in flavor basis with diagonal charged lepton Yukawa couplings
- H₂ will be a heavy doublet that couples only to neutrinos and the strange quark
 - ullet We will call the strange quark Yukawa coupling $\kappa_{
 m s}$
 - ullet For an H_2 mass of M_{H_2} , the mass-basis neutrino Yukawa couplings are

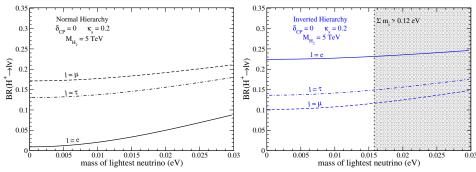
$$\kappa_{\nu,i} = \frac{M_{H_2}^2}{\kappa_s \langle \bar{s}s \rangle} m_i \tag{2}$$

• The matrix of neutrino Yukawa couplings is then $V_{PMNS}K_{\nu}$ with $K_{\nu}=diag(\kappa_{\nu,1},\kappa_{\nu,2},\kappa_{\nu,3})$

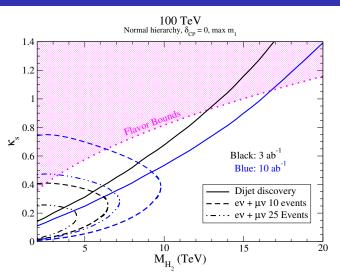

Getting This Flavor Model

 We have the following general 2HDM Yukawa sector (flavor indices suppressed):

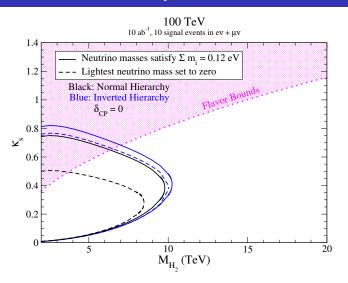
$$\sum_{a=1}^{2} -\lambda_{u}^{a} \bar{Q} \epsilon H_{a}^{*} u - \lambda_{d}^{a} \bar{Q} H_{a} d - \lambda_{\nu}^{a} \bar{L} \epsilon H_{a}^{*} \nu_{R} - \lambda_{\ell}^{a} \bar{L} H_{a} \ell + \text{H.C.}$$
(3)


- We introduce a Z_2 symmetry under which H_2 and ν_R are odd, other SM fields are even
 - This Z_2 eliminates neutrino couplings to H_1 and the ordinary fermion mass generation mechanism
 - Also eliminates H_2 couplings to other fermions, including the s quark coupling that we need
- We can spontaneously break the Z_2 with a scalar ϕ , and use a dim 5 operator like $\frac{\phi H_2 \bar{Q}s}{\Lambda}$ where $\langle \phi \rangle \neq 0$
 - This can come from e.g. a UV model with a heavy vector-like quark with the quantum numbers of the right-handed s

Flavor Constraints


- ullet $D-ar{D}$ mixing is the primary constraint on κ_s
 - \bullet These constraints beat the reach of the LHC; need to go to 100 TeV
- ullet $D_S^+
 ightarrow e^+
 u$ can constrain this general mass generating mechanism
 - Current limits come from Belle; we don't expect Belle II to approach sensitivity to our model

Charged Higgs Branching Ratios


- Charged Higgs can decay to dijet, or charged lepton and neutrino
- The branching ratios $BR(H \to e\nu, \mu\nu, \tau\nu)$ depend on mass hierarchy, slightly on absolute neutrino mass scale
 - ullet In normal hierarchy, $\mu
 u$ is the dominant lepton final state
 - ullet In inverted hierarchy, e
 u is the dominant lepton final state

100 TeV Discovery Potential

- s quark coupling leads to large production from quark initial states
- ullet Dijets and $\ell
 u$ provide orthogonal discovery potential

Effects of the Mass Hierarchy

 The neutrino mass hierarchy and absolute mass scale matter for the collider phenomenology

Conclusions¹

- Chiral condensates in QCD provide another (small) source of electroweak symmetry breaking
- A heavy Higgs doublet can connect this symmetry breaking to the neutrino sector
- Strange quark couplings are a viable path for neutrino mass with interesting collider signatures
 - Dijet signal
 - Lepton plus missing energy
- Charged Higgs branching ratios are sensitive to the neutrino mass hierarchy

Thank you!