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• A simplistic view: A discrepancy between different 
inferences of the Hubble constant H0. 

What is the Hubble tension?
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Freedman (2021)



• In reality, the tension is about distance measurements. 

What is the Hubble tension?
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• Essentially, different 
data sets do not agree 
on how far from us 
certain objects in the 
Universe actually are.
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Cause of the Hubble tension

• The discrepancy either arises because

1. Our distance measurements are incorrect.

2. The cosmological model we use to fit all those 
distances is incorrect.  

• Assuming that the measurements are correct (?), finding a 
solution thus requires writing down a cosmological model 
that can fit all known cosmological distances. 

• Simply finding a cosmological model that has H0~73 
km/s/Mpc is not sufficient.    



• We first need an absolute anchor (i.e. a known dimensionful
quantity) to set the scale of the problem.

How do we measure distances locally?
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Parallax Detached eclipsing binaries Masers

Absolute scale: Sun-
Earth distance

Absolute scale: Period 
of the binary

Absolute scale: 
Acceleration of the 

masers

NRAO

Wikimedia

Iowa U.

See e.g. Reid, Pesce & Riess (2019)See e.g. Paczynski (1996), Bonanos et al. (2006),
Graczyk (2003)

See e.g. van Leeuwen et al. (2017), Luri
et al. (2018), Torra et al. (2019). 



• Use these local anchors to calibrate the absolute 
luminosity of standard candles.

How do we measure distances locally?
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Iowa U.

✨✨✨✨

Local absolute anchor

✨

✨

✨

⭐

Calibrator galaxies

Type Ia Supernova
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L / 4⇡d2F

Compare these to 
measure distance to 

galaxies 

This determines the absolute 
SNe Ia magnitude, MSN.



• With the absolute supernova magnitude known, measure 
distances to SNe Ia in the Hubble flow.

How do we measure distances locally?
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Calibrator galaxies

⭐

⭐

⭐
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µ = 5 log (dL/Mpc) + 25
Determine Msn

See e.g. Freedman at al. (2001), Riess et al. (2011), Riess et al. (2016), Freedman 
et al. (2019). Riess et al. (2019), Riess et al. (2021), Freedman (2021)



• The luminosity distance can be computed within any 
cosmological model:

• However, a cosmographic expansion of the luminosity 
distance is often used to extract H0 from data.

Turning distances to a Hubble constant
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which in terms of luminosity distance is given by

µ = 5log(dL) + 25, (2.5)

where dL is the luminosity distance which is given by

dL = (1 + z)
c

H0

Z z

0

dz0

E(z0)
, (2.6)

and E(z) = H(z)/H0 is the dimensionless Hubble rate. Therefore, we can solve eq. (2.4) for
H0 in terms of only observable quantities to find

µ / log10

✓
c

H0

Z z

0

dz0

E(z0)

◆
. (2.7)

Equation (2.7) explicitly shows that distance measurements determine the value of H0. In-
deed, calculating H0 at z = 0 from the local distance ladder relies on distance measurements
of SNe Ia in the redshift range z & 0.02, with the lower bound set to avoid the coherent flow
of local SNe Ia [29]. Additionally, the overall shape of the redshift-luminosity relationship is
relevant due to the redshift integral in eq. (2.6) [22].

2.2 CMB Distance Measurements

The most precise measurements of the Hubble constant have so far been obtained from de-
tailed observations of the CMB [24]. Light from the CMB last-scattering surface forms a
two-dimensional projected map on the sky whose primary observables are temperature and
polarization fluctuations on different angular scales. These perturbations tell us about critical
physical processes in the pre-recombination era. By themselves, fractional temperature and
polarization fluctuations seen projected on the sky do not set an absolute distance scale from
which the Hubble constant can be inferred [55]. What fundamentally allows us to determine
H0 from CMB observations in the ⇤CDM model is the knowledge of the CMB temperature
today T0, which provides an absolute scale on which cosmological distances important to the
CMB can be calibrated [152].

The most prominent CMB angle on the sky is the angular size of the sound horizon at
last scattering (z?), which is given by

✓? =
rs

DA(z?)
, (2.8)

where rs is the comoving baryon-photon sound horizon, and DA(z?) is the comoving angular
diameter distance to the CMB. Mathematically, rs and DA(z?) are given by

rs =

Z 1

z?

csdz

H(z)
and DA(z?) =

Z z?

0

dz

H(z)
, (2.9)

where cs is the sound speed of the primeval plasma, and H(z) is the Hubble expansion rate.
On dimensional ground, the comoving sound horizon is approximately given in ⇤CDM by
rs ' 10�4Mpl/T 2

0
, where Mpl is the Planck mass and the prefactor has mild dependence

dependence on the redshift of matter-radiation equality, the photon-to-baryon ratio, and z?.
On the other hand, the comoving angular diameter distance scales as DA(z?) ' (3.1H0)�1,
which implies that the Hubble constant inferred in ⇤CDM by the CMB is approximately

H0 ⇠ 3.1⇥ 104✓?
T 2
0

Mpl

. (2.10)

– 6 –
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dL ⇡
cz

H0
+O(z2), z ⌧ 1

This assumes a smooth variation of the luminosity distance 
with redshift.
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Beware of models simply trying to get a 
given H0 value

Planck collaboration (2018)

CMB

BAO

See e.g. Di Valentino et al. (2021)
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Beware of models simply trying to it a 
given H0 value

Planck collaboration (2018)

CMB

BAO

See e.g. Di Valentino et al. (2021)
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Break down of the cosmographic expansion 
near z~0 

Benevento et al. (2020)

• Dramatically increasing the Hubble rate at very late times breaks 
down the standard assumptions of the distance ladder analyses.  

Greene and Cyr-Racine, arXiv:2112.11567, JCAP

Red points have H0 ~ 73 
km/s/Mpc
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dL 6= cz

H0
, z ⌧ 1

This results in a poor fit to the actual 
distances 
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Important Lesson

If you are working on a late-time 
solution, please make sure that your 

model fit the actual distances to Type Ia
supernovae. 

Aside: Observational collaboration should release their 
distance measurements, rather that model-dependent values 

of H0.



• Lots of ideas out here! 
Why are they struggling 
to get a large value of 
the Hubble rate?

Rest of talk: Why is it so hard to get a large 
Hubble constant from the CMB + BAO?
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Schöneberg et al., arXi:2107.10291
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Measuring distances with the CMB
The CMB primarily 

measures angles on the 
sky. The whole CMB 

sky is at the same 
redshift.

The most precise known 
number in cosmology! 
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Insensitivity of redshifts/angles to actual 
distances

Fundamental geometric degeneracy: An observer cannot 
determine the absolute scale of the problem from just 

measuring angles.

• Fundamentally, we cannot 
infer the value of the 
Hubble constant from only 
measurements of angles and 
redshifts. 

• In general, we cannot 
measure a dimensionfull
quantity from purely 
dimensionless observables.
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Invariance of angles under uniform rescaling of the 
Hubble rate

H ! fH

• All angles on the CMB sky are invariant 
under this scaling (for constant f ):
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DA(z⇤) =

Z z⇤

0
dz

1

H(z)
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✓⇤ =
rs

DA(z⇤)
where
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Baryons Acoustic Oscillations are also 
invariant under                              

BAO primarily measures 2 
dimensionless combinations
Line of sight:

Transverse:

H(z)rs

rs/DA(z)

Clearly, a uniform rescaling of the Hubble rate 
leaves all cosmological angles invariant

Eric Huff (JPL)
H ! fH



CMB/BAO measurements of H0
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• Since we are inferring a value of the Hubble rate from 
CMB and BAO data, something is breaking this scale 
invariance. 

• What is the absolute calibrator scale here?



CMB/BAO measurements of H0
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Fixsen et al. (2009)

• Since we are inferring a value of the Hubble rate from 
CMB and BAO data, something is breaking this scale 
invariance. 

• What is the absolute calibrator scale here?

The CMB temperature today!
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T0 = 2.7255K
COBE



CMB/BAO measurements of H0
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Fixsen et al. (2009)
Ivanov et al. (2020)
Greene & Cyr-Racine (2022)

• Since we are inferring a value of the Hubble rate from 
CMB and BAO data, something is breaking this scale 
invariance. 

• What is the absolute calibrator scale here?

• The Hubble constant from the CMB is

The CMB temperature today!
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T0 = 2.7255K

which in terms of luminosity distance is given by

µ = 5log(dL) + 25, (2.5)

where dL is the luminosity distance which is given by

dL = (1 + z)
c

H0

Z z

0

dz0

E(z0)
, (2.6)

and E(z) = H(z)/H0 is the dimensionless Hubble rate. Therefore, we can solve eq. (2.4) for
H0 in terms of only observable quantities to find

µ / log10

✓
c

H0

Z z

0

dz0

E(z0)

◆
. (2.7)

Equation (2.7) explicitly shows that distance measurements determine the value of H0. In-
deed, calculating H0 at z = 0 from the local distance ladder relies on distance measurements
of SNe Ia in the redshift range z & 0.02, with the lower bound set to avoid the coherent flow
of local SNe Ia [29]. Additionally, the overall shape of the redshift-luminosity relationship is
relevant due to the redshift integral in eq. (2.6) [22].

2.2 CMB Distance Measurements

The most precise measurements of the Hubble constant have so far been obtained from de-
tailed observations of the CMB [24]. Light from the CMB last-scattering surface forms a
two-dimensional projected map on the sky whose primary observables are temperature and
polarization fluctuations on different angular scales. These perturbations tell us about critical
physical processes in the pre-recombination era. By themselves, fractional temperature and
polarization fluctuations seen projected on the sky do not set an absolute distance scale from
which the Hubble constant can be inferred [55]. What fundamentally allows us to determine
H0 from CMB observations in the ⇤CDM model is the knowledge of the CMB temperature
today T0, which provides an absolute scale on which cosmological distances important to the
CMB can be calibrated [152].

The most prominent CMB angle on the sky is the angular size of the sound horizon at
last scattering (z?), which is given by

✓? =
rs

DA(z?)
, (2.8)

where rs is the comoving baryon-photon sound horizon, and DA(z?) is the comoving angular
diameter distance to the CMB. Mathematically, rs and DA(z?) are given by

rs =

Z 1

z?

csdz

H(z)
and DA(z?) =

Z z?

0

dz

H(z)
, (2.9)

where cs is the sound speed of the primeval plasma, and H(z) is the Hubble expansion rate.
On dimensional ground, the comoving sound horizon is approximately given in ⇤CDM by
rs ' 10�4Mpl/T 2

0
, where Mpl is the Planck mass and the prefactor has mild dependence

dependence on the redshift of matter-radiation equality, the photon-to-baryon ratio, and z?.
On the other hand, the comoving angular diameter distance scales as DA(z?) ' (3.1H0)�1,
which implies that the Hubble constant inferred in ⇤CDM by the CMB is approximately

H0 ⇠ 3.1⇥ 104✓?
T 2
0

Mpl

. (2.10)
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COBE
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spectral measurements opens up an approximate1 de-
generacy between T0 and H0. We wish to respect the
COBE/FIRAS constraint and so consider a series of al-
ternative transformations that all preserve the photon
energy density today. The CMB anisotropy and polar-
ization observables are all approximately invariant under
these transformations, with varying degrees of departure
from exact invariance.

The alternative transformation that comes closest
to CMB-observable invariance preserves the baryon-to-
photon ratio and the fraction of radiation that is free
streaming. We preserve the latter with the introduc-
tion of a dark relativistic fluid. We then investigate the
sensitivity of the CMB anisotropy and polarization ob-
servables to this particular alternative transformation.
It arises from changes to the baryon fraction (ratio of
baryon density to total matter density), and the di↵er-
ences between the photon-baryon fluid and the dark rel-
ativistic fluid.

Next we relax our artificial constraint on the ioniza-
tion fraction as a function of redshift, xe(z), restoring
its dependence on atomic reaction rates and cosmolog-
ical parameters. We find that whether we fix xe(z) or
self-consistently calculate it, makes very little di↵erence
to cosmological observables and posterior distributions of
cosmological parameters as determined by current obser-
vations.

In contrast, determining the Helium fraction by BBN
consistency, or placing a prior on it arising from abun-
dance inferences based on observations of extragalactic
HII regions, has a significant impact on CMB observ-
ables. With these restrictions on Helium in place, the
e↵ective Thomson cross section can no longer follow the
prescribed transformation. We find that the Thomson
cross section is an important length scale, significantly
impacting determination of H0. Our analyses provide
insight into the roles played by many physical processes
in the determination of H0 from CMB and BAO obser-
vations. These processes include Thomson scattering,
Helium production in BBN, neutrino free streaming, re-
combination, radiation driving, and the early ISW e↵ect.
Although the specific scenarios we study are all ones with
additional light relics, we attempt to derive conclusions
that apply more broadly.

II. EXACT SYMMETRY OF COSMOLOGICAL
PERTURBATIONS

In this section, we show that the CMB anisotropy spec-
tra and the matter power spectrum possess an exact sym-

1 or an exact one in the context of our (artificial) transformation

metry under the scaling transformation

⇢i ! f
2
⇢i,

̇! f ̇ and

As ! As/f
(ns�1) (1)

where i enumerates all the components with densities
⇢i, ̇ = ane�T is the Thomson opacity, and As and ns

are the amplitude and spectral index of the primordial
matter power spectrum.
To show the existence of this symmetry, we start by

computing how the solution to the Boltzmann equations
describing dark matter, baryons, photons, and neutrinos
transform under this scaling. We then discuss the behav-
ior of the gravitational potentials under this transforma-
tion. We finally show how the CMB C` and the matter
power spectrum can be left exactly invariant under this
scaling of the Hubble rate once the primordial spectrum
of fluctuations is properly adjusted. Our discussion here
follows that presented in Ref. [3], but is extended here
beyond the tight-coupling approximation.
As a starting point, let us first examine the Boltzmann

equations governing the evolution of photons and baryons
fluctuations. Using the scale factor a as our time variable,
these take the form [6]
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where F�l are the multipole moments of the photon
temperature perturbation, k is the Fourier wavenumber,
̇ = ane�T is the Thomson opacity, �b is the baryon den-
sity perturbation, vb is the baryonic bulk velocity, cs is
the baryonic sound speed, and � and  are the two grav-
itational potentials in conformal Newtonian gauge. Note
that we have used the relationship

d

d⌘
= a

2
H

d

da
(3)

to convert between conformal time (⌘) derivatives and
scale-factor derivatives. It is straightforward to see that
these equations are invariant under the transformation

H ! fH, k ! fk, ̇! f ̇. (4)

These transformations correspond to equally rescaling all
length scales appearing in the Boltzmann equations: the

Beyond geometric invariance: Other scales
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• Other length scales enter the evolution of the early 
Universe: wavenumber k and the baryon-photon scattering 
rate.

• For example, let’s look at the Euler equation for photons:
(Use scale factor “a” as 
time variable.)

Photon temperature 
monopole perturbation

Photon heat flux

Gravitational driving 
term

Photon quadrupole

Photon-baryon 
scattering rate



Two important ratios of scales
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• But what if I want to leave these ratios invariant? Scale 
everything!

• By dimensional analysis, all factors of f cancel out in the 
equations of motion (EOM). 

2

spectral measurements opens up an approximate1 de-
generacy between T0 and H0. We wish to respect the
COBE/FIRAS constraint and so consider a series of al-
ternative transformations that all preserve the photon
energy density today. The CMB anisotropy and polar-
ization observables are all approximately invariant under
these transformations, with varying degrees of departure
from exact invariance.

The alternative transformation that comes closest
to CMB-observable invariance preserves the baryon-to-
photon ratio and the fraction of radiation that is free
streaming. We preserve the latter with the introduc-
tion of a dark relativistic fluid. We then investigate the
sensitivity of the CMB anisotropy and polarization ob-
servables to this particular alternative transformation.
It arises from changes to the baryon fraction (ratio of
baryon density to total matter density), and the di↵er-
ences between the photon-baryon fluid and the dark rel-
ativistic fluid.

Next we relax our artificial constraint on the ioniza-
tion fraction as a function of redshift, xe(z), restoring
its dependence on atomic reaction rates and cosmolog-
ical parameters. We find that whether we fix xe(z) or
self-consistently calculate it, makes very little di↵erence
to cosmological observables and posterior distributions of
cosmological parameters as determined by current obser-
vations.

In contrast, determining the Helium fraction by BBN
consistency, or placing a prior on it arising from abun-
dance inferences based on observations of extragalactic
HII regions, has a significant impact on CMB observ-
ables. With these restrictions on Helium in place, the
e↵ective Thomson cross section can no longer follow the
prescribed transformation. We find that the Thomson
cross section is an important length scale, significantly
impacting determination of H0. Our analyses provide
insight into the roles played by many physical processes
in the determination of H0 from CMB and BAO obser-
vations. These processes include Thomson scattering,
Helium production in BBN, neutrino free streaming, re-
combination, radiation driving, and the early ISW e↵ect.
Although the specific scenarios we study are all ones with
additional light relics, we attempt to derive conclusions
that apply more broadly.

II. EXACT SYMMETRY OF COSMOLOGICAL
PERTURBATIONS

In this section, we show that the CMB anisotropy spec-
tra and the matter power spectrum possess an exact sym-

1 or an exact one in the context of our (artificial) transformation

metry under the scaling transformation

⇢i ! f
2
⇢i,

̇! f ̇ and

As ! As/f
(ns�1) (1)

where i enumerates all the components with densities
⇢i, ̇ = ane�T is the Thomson opacity, and As and ns

are the amplitude and spectral index of the primordial
matter power spectrum.
To show the existence of this symmetry, we start by

computing how the solution to the Boltzmann equations
describing dark matter, baryons, photons, and neutrinos
transform under this scaling. We then discuss the behav-
ior of the gravitational potentials under this transforma-
tion. We finally show how the CMB C` and the matter
power spectrum can be left exactly invariant under this
scaling of the Hubble rate once the primordial spectrum
of fluctuations is properly adjusted. Our discussion here
follows that presented in Ref. [3], but is extended here
beyond the tight-coupling approximation.
As a starting point, let us first examine the Boltzmann

equations governing the evolution of photons and baryons
fluctuations. Using the scale factor a as our time variable,
these take the form [6]
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where F�l are the multipole moments of the photon
temperature perturbation, k is the Fourier wavenumber,
̇ = ane�T is the Thomson opacity, �b is the baryon den-
sity perturbation, vb is the baryonic bulk velocity, cs is
the baryonic sound speed, and � and  are the two grav-
itational potentials in conformal Newtonian gauge. Note
that we have used the relationship

d

d⌘
= a

2
H

d

da
(3)

to convert between conformal time (⌘) derivatives and
scale-factor derivatives. It is straightforward to see that
these equations are invariant under the transformation

H ! fH, k ! fk, ̇! f ̇. (4)

These transformations correspond to equally rescaling all
length scales appearing in the Boltzmann equations: the

This leaves the photon-baryon (and dark matter 
and massless neutrinos) EOM invariant.
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k/H, ̇/H

Most “early” solution 
to the Hubble tension 
change this ratio in 

some ways.



Hint of a symmetry: Basic geometry and 
the dimensional analysis
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• Dimensionless observables 
seen in projection on the sky 
have an intrinsic scale 
invariance.

• By dimensional analysis, 
ODEs for the evolution of 
dimensionless quantities can 
only depend on 
dimensionless ratios.  
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k/H, ̇/H

Nothing special about cosmology here!

Photon-baryon scattering rate



Special feature of our Universe: Initial 
conditions
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• We happen to live in a Universe in which the initial scalar 
fluctuations have no intrinsic scale.

• Thus, a rescaling of wavenumbers can be corrected with a 
trivial rescaling of the power-law amplitude:

k ! fk

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations
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where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
TT
` (f) =

Z
dk

k
P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =

Z 1

a
da

0 ne�T

fa0H
=
(a, f = 1)

f
. (9)

This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =
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0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form
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Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f

ns�1 we
can write this as
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hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes

Zahn and Zaldarriaga (2003)
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Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations
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where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
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dk
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P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =
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This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =
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0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form
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=
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Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f
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can write this as
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hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes

Cai et al. (2015)



Towards an exact solution: The scaling 
“recipe”
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1. Increase Hubble rate at all times by scaling up every 
energy density:

2. Scale up the photon scattering rate                     according 
to:

3. Adjust the initial amplitude of scalar fluctuations 
according to
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̇ = ane�T

G⇢i ! f2G⇢i H ! fH
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important questions raised by our proposed scenario, and
their possible resolutions, before concluding.

The Scaling Transformation.— If we assume, for now,
that recombination happens in equilibrium and neutri-
nos are massless then the only length scales in the linear
perturbation evolution equations in the ⇤CDM model,
written with the scale factor a = 1/(1 + z) as the in-
dependent time-like variable, are the gravitational time
scales of each of the i = 1 to N components, 1/

p
G⇢i(a),

and the photon mean free path between electron scatters,
1/(�Tne(a)). As a result, if we consider the linear evo-
lution of a single Fourier mode with wavenumber k, any
fractional perturbation, such as �⇢m(k, a)/⇢m(a) satisfy-
ing the evolution equations will also satisfy them when
transformed by a uniform scaling of all relevant (inverse)
length scales (including k) by a factor we will call f .
Since the initial conditions in ⇤CDM do not introduce
a length scale (the spectrum of initial perturbations is a
power law with an amplitude to be determined from ob-
servations), the statistical properties of fractional pertur-
bations viewed in projection are independent of f except
for an overall amplitude. Dependence on the amplitude
can be removed [40] by extending the scaling transforma-
tion to include As ! As/f

(ns�1) where As is the ampli-
tude of the primordial power spectrum at some fiducial
value of k, and ns is the spectral index of the power law
power spectrum of initial density perturbations.

In Ref. [40] this transformation was introduced but
without the photon scattering-rate scaling. Including it,
the transformation leads to an exact symmetry, in the
limit of equilibrium recombination [73], massless neutri-
nos [74], and linearized equations [75], of the statisti-
cal properties of maps made in projection on the sky
of quantities such as �⇢/⇢, and fractional CMB tem-
perature and polarization anisotropies. These include
galaxy clustering power spectra, shear power spectra,
galaxy-shear cross correlations, fractional CMB temper-
ature power spectra, polarization power spectra, and the
temperature-polarization cross spectrum. The invariance
exists for the ⇤CDM model, and any other model as long
as additional length scales (if any, such as related to mean
curvature or neutrino mass) are properly scaled as well.
Absent the introduction of new length scales, the full
transformation can be written as

p
G⇢i(a) ! f

p
G⇢i(a), �Tne(a) ! f�Tne(a)

and As ! As/f
(ns�1)

.

(1)

Symmetry Breaking.—In the real universe, the trans-
formation given in Eq. (1) immediately runs into severe
problems with observations that are sensitive to absolute
densities of cosmological components. Most importantly,
we know very precisely the mean energy density of the
CMB today from measurements of its flux density across
a broad range of wavelengths. It is famously nature’s
best approximation to black body radiation, with a mea-
sured temperature from FIRAS of T0 = 2.7255 ± 0.0013

K [76, 77]. By anchoring ⇢� , this measurement severely
limits our ability to exploit the scaling transformation to
raise H0. A similar point was made recently in Ref. [78].
Other important e↵ects that break the above symme-

try arise from departures from thermodynamic equilib-
rium, as emphasized in Ref. [40]. Unlike periods of equi-
librium, during which we have no sensitivity to the rates
of the reactions that are maintaining equilibrium, peri-
ods in which equilibrium is lost provide us with valuable
sensitivity to the relevant reaction rates. If we then as-
sume that such microphysical rates are known, we can
gain sensitivity to the Hubble rate. A prime example
is Big Bang Nucleosynthesis (BBN), where sensitivity of
the yield of helium to nuclear reaction rates allows one to
infer, from measurements of YP, the expansion rate dur-
ing BBN, and thus, through the Friedmann equation, the
mass/energy density of the Universe at that time. Sim-
ilarly, hydrogen recombination is an out-of-equilibrium
process which is sensitive to atomic reaction rates, and
thus breaks the symmetry of the Eq. (1) transformation.
We will see that the impact of this symmetry breaking
on our parameter constraints is mild.
A mirror world dark sector and free YP.—We now ar-

gue that by extending the ⇤CDM model to include a
dark copy of the photons, baryons, and neutrinos (see
e.g. Refs. [79–99]), all with the same mean density ra-
tios as in the visible sector, we can e↵ectively mimic the
scaling transformation while evading the constraint from
FIRAS. The dark photons are a replacement for the ad-
ditional visible photons that would violate the FIRAS
constraint. The dark baryons (implemented as “atomic
dark matter” (ADM) [100–123]) allow us to scale up
the total baryon-like density without changing the well-
constrained (visible sector) baryon-to-photon ratio. The
dark neutrinos allow us to scale up the e↵ective number of
free-streaming neutrino species from its ⇤CDM value of
N

fs
e↵ = 3.046, preserving the somewhat well-constrained

ratio of free-streaming to tightly-coupled relativistic par-
ticle densities [124–126].
In our implementation, the new mirror dark sector in-

teracts purely gravitationally with the visible sector and
the CDM (this could be relaxed in a more general model).
Therefore, to mimic a ⇤CDM model with scaled-up den-
sities, the perturbations in the mirror world components
must evolve in the same way as in the visible sector.
For this to be the case the dark photons must transition
from tightly coupled to freely streaming when the visible
photons do. We thus ensure that the ADM recombines
at approximately the same time as regular hydrogen by
keeping the ratio BD/TD fixed, where BD is the binding
energy of the ADM, and by setting the dark fine struc-
ture constant and dark proton mass equal to those in the
light sector. For simplicity we assume there are no dark
versions of helium or heavier nuclei, although if present,
these could constitute some or all of the CDM.
The above choices ensure that the gravitational po-

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations
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where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form
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TT
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P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
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where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where
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This implies that
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Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get
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and the CMB temperature spectrum takes the form
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Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f
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hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation
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H ! fH, ̇! f ̇, As ! As/f
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An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes

Cyr-Racine, Ge, Knox, arXiv: 2107:13000, PRL accepted.



This works
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• This really leaves the CMB temp/pol invariant (fixing 
recombination history here)

f

H0 = 67.5, 74.3, 81km/s/Mpc



Reality check: 3 main symmetry 
breaking effects
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Getting around COBE: Mirror World
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• We can’t easily increase the densities of photons/baryons

• So instead add mirror “dark” particles! 

Chacko et al. (2005, a,b,c), Craig & Howe (2014), Craig et al. (2015), Farina (2015), Barbieri et al. 
(2016), Chacko et al. (2017), Csaki et al. (2017), Hochberg et al. (2017), Harigaya et al. (2017), Ibe
et al. (2019), Terning et al. (2019), Curtin & Gryba (2021), Blinov et al. (2021) and many more

Stranger Things



• Since the photon scattering 
rate and the recombination 
rate have the same 
parametric dependence, 
rescaling one takes care of 
the other, to a good 
approximation.

Recombination: A mild symmetry breaking
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Credits: Fei Ge



Towards an actual model
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• Three key ingredients are necessary to turn this general 
scaling transformation into an actual model

• A mirror dark sector that (nearly) mimic the SM (see e.g.
Blinov et al., arXiv :2108.11386)

• A means to rescale the photon scattering rate other than 
helium (see e.g. Sekiguchi and Takahashi, arXiv :2007.03381; Burgess et al. 
arXiv:2111.07286).

• A means to ensure consistency with helium and 
deuterium abundance measurements. 

These provide clear model-building targets!



The scaling symmetry helps understand 
constraints on other cosmological models

5/9/22Francis-Yan Cyr-Racine - UNM 31

Schöneberg et al., arXiv:2107.10291



Conclusions
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• The Hubble tension is really about distance measurements in 
the Universe.

• A successful cosmological model must be able to fit all known 
distances. 

• CMB, LSS, and BAO are invariant under the scaling 
transformation

• If a complete model could be found,  it would completely 
eliminate the Hubble tension. 

• This symmetry helps us understand the nature of cosmological 
constraints, and why new-physics models can (or cannot!) 
address the tension.

2

important questions raised by our proposed scenario, and
their possible resolutions, before concluding.

The Scaling Transformation.— If we assume, for now,
that recombination happens in equilibrium and neutri-
nos are massless then the only length scales in the linear
perturbation evolution equations in the ⇤CDM model,
written with the scale factor a = 1/(1 + z) as the in-
dependent time-like variable, are the gravitational time
scales of each of the i = 1 to N components, 1/

p
G⇢i(a),

and the photon mean free path between electron scatters,
1/(�Tne(a)). As a result, if we consider the linear evo-
lution of a single Fourier mode with wavenumber k, any
fractional perturbation, such as �⇢m(k, a)/⇢m(a) satisfy-
ing the evolution equations will also satisfy them when
transformed by a uniform scaling of all relevant (inverse)
length scales (including k) by a factor we will call f .
Since the initial conditions in ⇤CDM do not introduce
a length scale (the spectrum of initial perturbations is a
power law with an amplitude to be determined from ob-
servations), the statistical properties of fractional pertur-
bations viewed in projection are independent of f except
for an overall amplitude. Dependence on the amplitude
can be removed [40] by extending the scaling transforma-
tion to include As ! As/f

(ns�1) where As is the ampli-
tude of the primordial power spectrum at some fiducial
value of k, and ns is the spectral index of the power law
power spectrum of initial density perturbations.

In Ref. [40] this transformation was introduced but
without the photon scattering-rate scaling. Including it,
the transformation leads to an exact symmetry, in the
limit of equilibrium recombination [73], massless neutri-
nos [74], and linearized equations [75], of the statisti-
cal properties of maps made in projection on the sky
of quantities such as �⇢/⇢, and fractional CMB tem-
perature and polarization anisotropies. These include
galaxy clustering power spectra, shear power spectra,
galaxy-shear cross correlations, fractional CMB temper-
ature power spectra, polarization power spectra, and the
temperature-polarization cross spectrum. The invariance
exists for the ⇤CDM model, and any other model as long
as additional length scales (if any, such as related to mean
curvature or neutrino mass) are properly scaled as well.
Absent the introduction of new length scales, the full
transformation can be written as

p
G⇢i(a) ! f

p
G⇢i(a), �Tne(a) ! f�Tne(a)

and As ! As/f
(ns�1)

.

(1)

Symmetry Breaking.—In the real universe, the trans-
formation given in Eq. (1) immediately runs into severe
problems with observations that are sensitive to absolute
densities of cosmological components. Most importantly,
we know very precisely the mean energy density of the
CMB today from measurements of its flux density across
a broad range of wavelengths. It is famously nature’s
best approximation to black body radiation, with a mea-
sured temperature from FIRAS of T0 = 2.7255 ± 0.0013

K [76, 77]. By anchoring ⇢� , this measurement severely
limits our ability to exploit the scaling transformation to
raise H0. A similar point was made recently in Ref. [78].
Other important e↵ects that break the above symme-

try arise from departures from thermodynamic equilib-
rium, as emphasized in Ref. [40]. Unlike periods of equi-
librium, during which we have no sensitivity to the rates
of the reactions that are maintaining equilibrium, peri-
ods in which equilibrium is lost provide us with valuable
sensitivity to the relevant reaction rates. If we then as-
sume that such microphysical rates are known, we can
gain sensitivity to the Hubble rate. A prime example
is Big Bang Nucleosynthesis (BBN), where sensitivity of
the yield of helium to nuclear reaction rates allows one to
infer, from measurements of YP, the expansion rate dur-
ing BBN, and thus, through the Friedmann equation, the
mass/energy density of the Universe at that time. Sim-
ilarly, hydrogen recombination is an out-of-equilibrium
process which is sensitive to atomic reaction rates, and
thus breaks the symmetry of the Eq. (1) transformation.
We will see that the impact of this symmetry breaking
on our parameter constraints is mild.
A mirror world dark sector and free YP.—We now ar-

gue that by extending the ⇤CDM model to include a
dark copy of the photons, baryons, and neutrinos (see
e.g. Refs. [79–99]), all with the same mean density ra-
tios as in the visible sector, we can e↵ectively mimic the
scaling transformation while evading the constraint from
FIRAS. The dark photons are a replacement for the ad-
ditional visible photons that would violate the FIRAS
constraint. The dark baryons (implemented as “atomic
dark matter” (ADM) [100–123]) allow us to scale up
the total baryon-like density without changing the well-
constrained (visible sector) baryon-to-photon ratio. The
dark neutrinos allow us to scale up the e↵ective number of
free-streaming neutrino species from its ⇤CDM value of
N

fs
e↵ = 3.046, preserving the somewhat well-constrained

ratio of free-streaming to tightly-coupled relativistic par-
ticle densities [124–126].
In our implementation, the new mirror dark sector in-

teracts purely gravitationally with the visible sector and
the CDM (this could be relaxed in a more general model).
Therefore, to mimic a ⇤CDM model with scaled-up den-
sities, the perturbations in the mirror world components
must evolve in the same way as in the visible sector.
For this to be the case the dark photons must transition
from tightly coupled to freely streaming when the visible
photons do. We thus ensure that the ADM recombines
at approximately the same time as regular hydrogen by
keeping the ratio BD/TD fixed, where BD is the binding
energy of the ADM, and by setting the dark fine struc-
ture constant and dark proton mass equal to those in the
light sector. For simplicity we assume there are no dark
versions of helium or heavier nuclei, although if present,
these could constitute some or all of the CDM.
The above choices ensure that the gravitational po-



Backup slides
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Also need to look at the Einstein 
Equations
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• Via the Friedman equation, 

3

Hubble horizon, the wavelength of fluctuations, and the
photon mean free path. To close this system of equations,
we need the perturbed Einstein equations for the � and  
potentials. We use here the Poisson and shear equations

k
2
�+ 3aH

✓
a
2
H

d�

da
+ aH 

◆
= �4⇡Ga

2
X

i

⇢i�i, (5)

k
2(��  ) = 12⇡Ga

2
X

i

(⇢i + Pi)�i,

where �i and �i are the energy density perturbation and
anisotropic stress of species i, respectively. Once again,
these equations are invariant under the transformation
H ! fH (which implies ⇢i ! f

2
⇢i) and k ! fk. Mass-

less neutrinos and dark matter follow collisionless ver-
sions of those given in Eqs. (2), implying that they too
are invariant under the transformation H ! fH and
k ! fk. We note that the evolution of massive neutri-
nos perturbations are also invariant under this transfor-
mation, once their masses are also properly rescaled (see
Appendix TBD).

We thus see that the linear evolution equations of all
components present in the Universe are invariant under
the transformation given in Eq. (4). This means that we
can express the solution �̃ to the perturbation equations
in the presence of a rescaled Hubble rate H ! fH in
terms of the original solution � in the absence of scaling
(i.e. f = 1) as

�̃(k, ̇, a, f) = �(k/f, ̇/f, a, f = 1), (6)

where � here stands for any of the perturbation variables
(e.g. �, v, F�l, etc.). Such a relation was first presented in
Ref. [3] in the context of the tight-coupling approxima-
tion ( ̇� H), but we see here that it applies in a broader
context once the Thomson opacity is also rescaled.

Under this rescaling, the CMB temperature power
spectra then take the form

C
TT
` (f) =

Z
dk

k
P (k)|�̃T `(k, f)|2, (7)

where P (k) is the primordial spectrum of fluctuations,
and �T `(k, f) is the photon transfer function under the
rescaling f ! fH. The latter can be written as

�̃T `(k, f) =

Z 1

0
da S̃T (k, ̇, a, f)j`(k�̃(a, f)), (8)

where S̃T (k, ̇, a, f) is the photon source term, and
�̃(a, f) is the conformal distance to scale factor a in
the presence of the rescaled Hubble rate. The source
term S̃T depends on cosmological perturbations obeying
Eq. (6) and on the photon visibility function g̃(a, f) =
�d/da(e�̃(a,f)), where

̃(a, f) =

Z 1

a
da

0 ne�T

fa0H
=
(a, f = 1)

f
. (9)

This implies that

S̃T (k, ̇, a, f) = ST (k/f, ̇/f, a, f = 1). (10)

Similarly, we have �̃(a, f) = �(a, f = 1)/f . We thus get

�̃T `(k, f) =

Z 1

0
daST (k/f, ̇/f, a, f = 1)

⇥ j`((k/f)�(a, f = 1))

= �T `(k/f, f = 1), (11)

and the CMB temperature spectrum takes the form

C
TT
` (f) =

Z
dk

k
P (k)|�T `(k/f, f = 1)|2

=

Z
dk

0

k0
P (fk0)|�T `(k

0
, f = 1)|2. (12)

Adopting the standard power-law primordial power spec-
trum P (k) = As(k/kp)ns�1, where kp is the pivot scale,
and rescaling the scalar amplitude As ! As/f

ns�1 we
can write this as

C
TT
` (f) =

Z
dk

0

k0
As

fns�1

✓
fk

0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

=

Z
dk

0

k0
As

✓
k
0

kp

◆ns�1

|�T `(k
0
, f = 1)|2

= C
TT
` (f = 1), (13)

hence showing that the CMB temperature spectrum is
indeed exactly invariant under the transformation

�
H ! fH, ̇! f ̇, As ! As/f

ns�1
 
. (14)

An entirely similar argument applies to the polarization
and cross spectra, implying that the primary CMB is
entirely unchanged under this transformation. Further-
more, matter clustering observables (e.g. �8) are also in-
variant under this transformation, hence also leaving the
lensing of the CMB unchanged. We thus conclude that
the observable CMB is completely invariant under the
above transformation.
In the top row of Figure 1, the CMB power spectra are

the same under the exact scaling symmetry. In this case,
the physical energy density of di↵erent species are scaled
up by f

2. Since ne / Xe⌦bh
2(1 � Yp), the scaling sym-

metry brings in a factor of f2 in ne. To keep the ne�Ta

scaled by f , we can either scale Thomson scattering cross
section, �T ! �T /f , or vary the Helium mass fraction,
YP, to keep the “e↵ective Thomson cross section”. The
result is the same as we expected for the scaling symme-
try. In the plot, we show the scaling factor up to f = 1.3,
which corresponds to H0 = 87.57 km/s/Mpc.

III. SOURCES OF SYMMETRY BREAKING

Of course, not all observables are invariant under this
transformation. Further, there are physical processes

G⇢i ! f2G⇢iH ! fH

This is also invariant under the scaling 
transformation.
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Possible implication: Mirror Sector Freedom
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At face value, the direct Hubble 
measurements predict ~3% in 
atomic dark matter, and a dark 

photon bath with a neutrino-like 
temperature.  

Cyr-Racine, Ge, Knox, arXiv: 2107:13000, PRL accepted



Dark Sector scaling relation
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• Scaling transform for mirror sector:  

Ne↵ = f2N̄e↵ , TD = (f2 � 1)1/4TCMB

⇢DM = (f2 +Rnc(f
2 � 1))⇢(f=1)

DM ,

fadm =
Rnc(f2 � 1)

f2 +Rnc(f2 � 1)
,

Rnc ⌘ ⇢(f=1)
b /⇢(f=1)

DM

BD/TDKeep fixed: 


