CDF W mass result experimental mini-review

J. Huston

Michigan State University

Josh Isaacson will follow with a mini-review of the theory important for the measurement (not the possible theory explanations of the result, which would take a full day)

Many of the figures are borrowed from Ashutosh Kotwal's seminar at Fermilab.

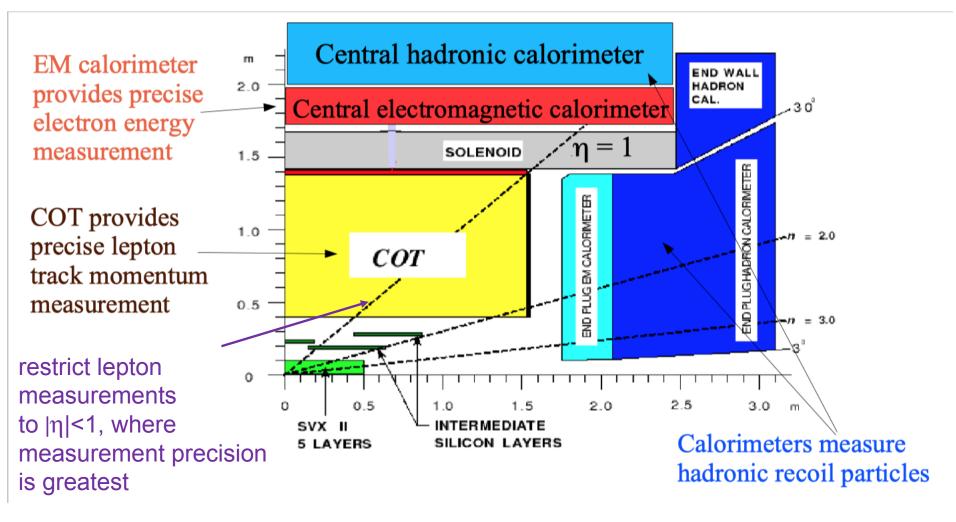
The face W mass that launched a thousand ships archive papers

No motivation needed for the importance of W mass measurements

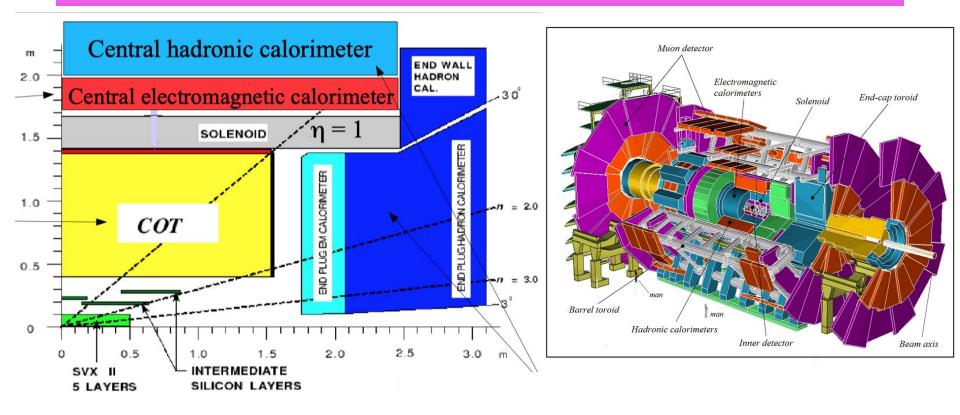
New Higgs bosons Dark sector with a Stueckelberg-Higgs portal

Singlet-triplet scalar leptoquark model

Triplet seesaw model


Type-III 2HDM

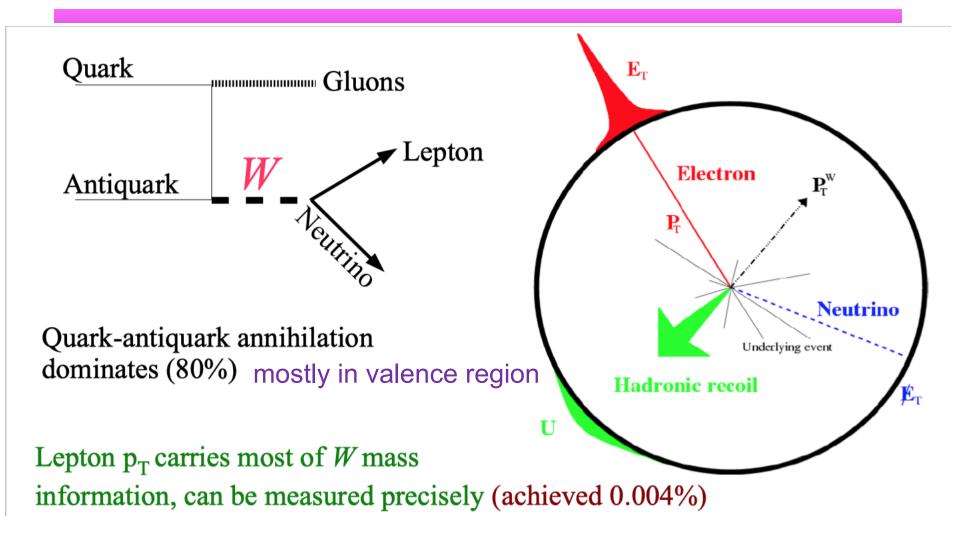
Vectorlike quark models


Georgi-Mahachek model Canonical scotogenic neutrino dark matter model

R-parity violating MSSM

The experiment (my home for almost 2 decades)

Tevatron vs LHC experiments



CDF has a smaller detector, smaller magnetic field, smaller precision tracking region, smaller collaboration than ATLAS. ______ only 5% of overall W production involves 2nd generation quarks

But it also has smaller PDF uncertainties, smaller pileup and smaller "QCD" effects, as well as decades of experience. In addition, in comparison to the LHC experiments, it is a *noiseless* detector.

So expect very competitive measurements of m_w.

The measurement

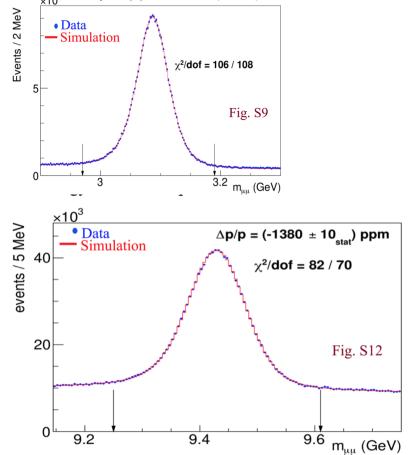
W mass can be determined through p_T of lepton, p_T of neutrino, and transverse mass, in both electron and muon channels, for both charge signs -> powerful cross-checks; more symmetry then at LHC because of pbar-p collider

Event selection for high purity W sample

- Electron
 - track: 30<p_T<55 GeV
- Muon
 - track: 30<p_T<55 GeV
- Missing transverse momentum
 - 30<p_T<55 GeV
- Recoil u
 - |u|<15 GeV
 - similar to a cut on $W p_{\tau}$
- W selection (for mass)
 - one (and only one) lepton, |η_I|
 <1, missing transverse momentum, |u|<15 GeV
 - 60<m_⊤<100 GeV
 - Z selection
 - two leptons, opposite sign
 - 66<m_l<116 GeV

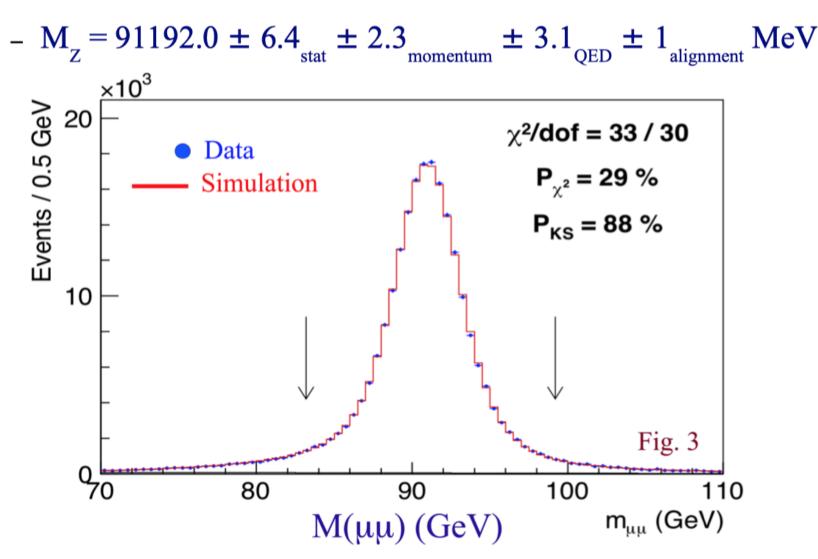
Data set of 8.8 fb⁻¹, collected from Feb 2002-Sept 2011

Sample	Candidates
$W \rightarrow electron$	1 811 700
$Z \rightarrow electrons$	66 180
$W \rightarrow muon$	2 424 486
$Z \rightarrow muons$	238 534


Very good background rejection; mis-identification backgrounds ~ 0.5%

Calibration

Tracker

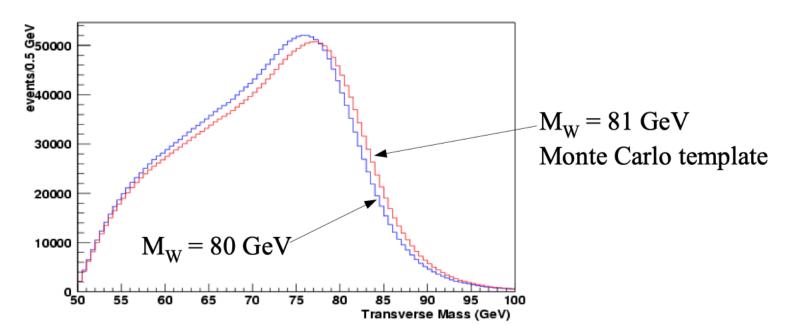

- alignment of COT using cosmic rays
- COT momentum scale constrained using J/ψ->μμ and Y->μμ
 - confirmed using Z-> $\mu\mu$
- EM calorimeter
 - momentum scale transferred to EM calorimeter using E/p spectrum
 - confirmed using Z->ee
- Hadronic recoil modeling
 - p_T-balance in Z->II events

 Custom Monte Carlo detector simulation, with tracks and photons propagated through a high-resolution
 3-D lookup table of material properties
 J/ψ→μμ mass fit (bin 8)

(Blinded) Z->µµ mass check (momentum scale)

- Z mass consistent with PDG value (91188 MeV) (0.7 σ statistical)

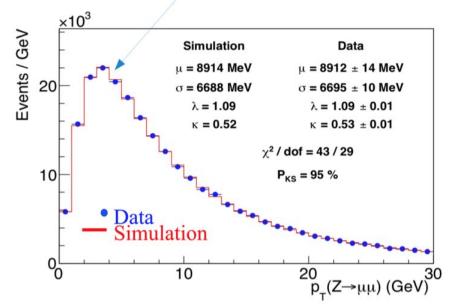
(Blinded) Z->ee mass check (energy scale)

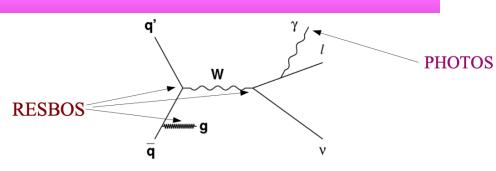

- Consistent with PDG value (91188 MeV) within 0.5σ (statistical)
- $M_z = 91194.3 \pm 13.8_{stat} \pm 6.5_{calorimeter} \pm 2.3_{momentum} \pm 3.1_{QED} \pm 0.8_{alignment}$ MeV
- Combine E/p-based calibration with $Z \rightarrow ee$ mass for maximum precision <u>×10³</u> Events / 0.5 GeV χ^{2} /dof = 46 / 38 Data $P_{\gamma^2} = 16 \%$ Simulation 4 P_{κs} = 93 % 2 $\Delta S_{\rm E} = -14 \pm 72 \text{ ppm}$ Fig. 3 90 80 100 110 M(ee) (GeV) m_{ee} (GeV)

Signal simulation and template fitting

- Signals simulated using custom fast Monte Carlo
- W mass extracted from 6 kinematic distributions
 - transverse mass

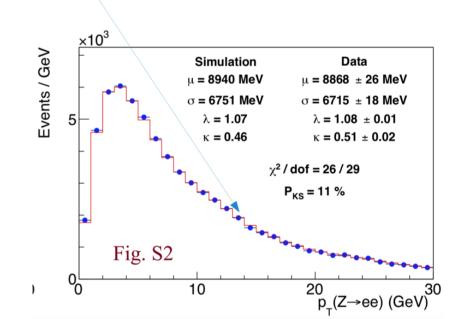
$$m_{\mathrm{T}} = \sqrt{2 \Big(p_{\mathrm{T}}^\ell p_{\mathrm{T}}^{\mathrm{v}} - ec{p}_{\mathrm{T}}^\ell \cdot ec{p}_{\mathrm{T}}^{\mathrm{v}} \Big)}$$

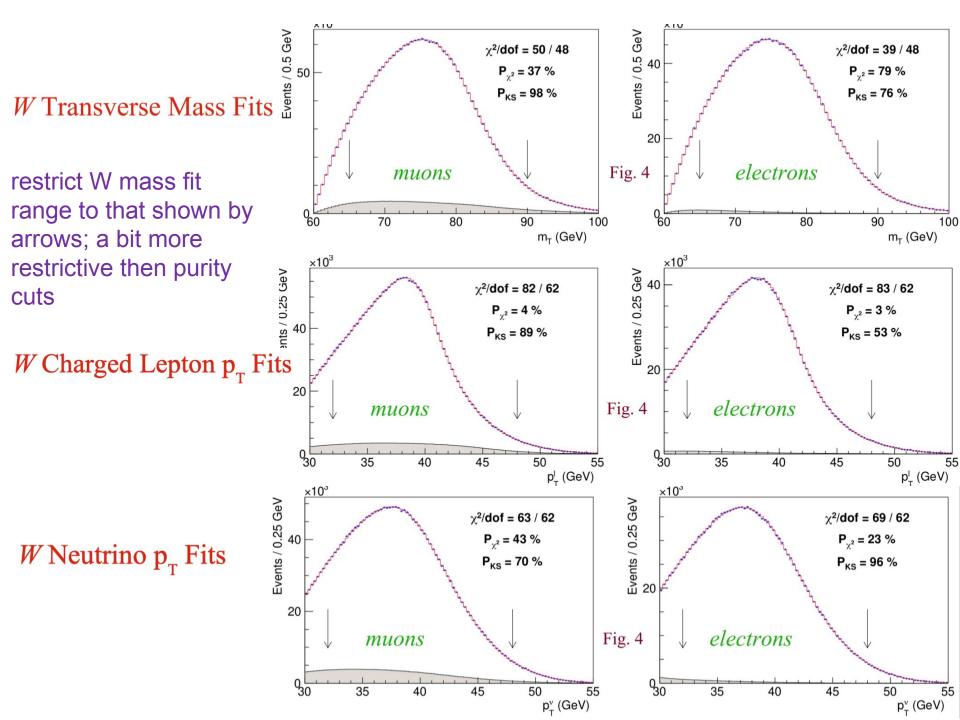

- charged lepton p_T
- neutrino p_T (missing E_T)
- both electron and muon channels



Theory-level predictions

- Predictions for W/Z production and decay provided by ResBos
 - with multiple radiative photons generated by PHOTOS
- Characterize transverse momentum distributions; <u>at low p_T, have tunable non-perturbative parameters</u>
 Position of peak in boson p_T spectrum


depends on g_2 (non-perturbative Sudakov factor)



The version used is NNLL+NLO. See Josh's talk for impact of higher orders and of PDFs.

Tail to peak ratio depends on α_s

	Distribution			W-boson mass (MeV)					$\chi^2/{ m dof}$
	n	$n_T(e, t)$	u)	80 4	$29.1 \pm$	10.3_{s}	$_{ m stat} \pm 8.5_{ m sys}$	st .	39/48
	p_{i}^{t}	$_T^\ell(e)$		$80 \ 4$	$11.4 \pm$	10.7_{s}	$_{ m stat} \pm 11.8_{ m st}$	yst 8	83/62
	p_{i}^{b}	$_{T}^{ u}(e)$		80 4	$26.3 \pm$	14.5_{s}	$_{ m stat}\pm 11.7_{ m sc}$	$_{\rm yst}$	69/62
	\overline{n}	$n_T(\mu,$	u)	80 4	$46.1 \pm$	$9.2_{\rm st}$	$_{ m at} \pm 7.3_{ m syst}$	ļ	50/48
	p_{i}^{2}	$_{T}^{\ell}(\mu)$		$80 \ 4$	$28.2 \pm$	9.6_{st}	$_{ m at} \pm 10.3_{ m sys}$	st 8	82/62
	p_{z}^{b}	$_{T}^{ u}(\mu)$		$80 \ 4$	$28.9 \pm$	13.1_{s}	$_{ m stat}\pm10.9_{ m sc}$	$_{\rm yst}$	63/62
			nation	80 4	$33.5 \pm$	6.4_{st}	$_{ m at} \pm 6.9_{ m syst}$		7.4/5
Combination	m_T		p_T^ℓ		p_T^{ν} f		Value (MeV)	$\chi^2/{ m dof}$	Probability
	Flectrons							1	
	Electrons	s Muons	Electrons	Muons	Electrons	WIGHIS	80 420 0 ± 0 8	19/1	(%)
m_T p_T^ℓ	Electrons	√ v		Muons	Electrons	Widons	$80\ 439.0\pm9.8$ $80\ 421\ 2\pm11\ 9$	1.2 / 1 0.9 / 1	28
p_T^ℓ	Electrons	√ vituons	V	√ v	∠ Electrons		80421.2 ± 11.9	$0.9 \ / \ 1$	20. 00.
$p_T^\ell \ p_T^ u$	Electrons	√ v	✓ ✓	√ √	√		80421.2 ± 11.9	$egin{array}{cccc} 0.9 \ / \ 1 \ 0.0 \ / \ 1 \end{array}$	28 36 91
p_T^ℓ	Electrons ✓ ✓	✓ ✓ ✓	✓ ✓	√ √	✓ ✓	✓	$\begin{array}{c} 80 \ 421.2 \pm 11.9 \\ 80 \ 427.7 \pm 13.8 \end{array}$	$0.9 \ / \ 1$	28 36 91 19
$p_T^\ell \ p_T^ u \ m_T \ \& \ p_T^\ell$	Electrons	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓	$\begin{array}{c} 80 \ 421.2 \pm 11.9 \\ 80 \ 427.7 \pm 13.8 \\ 80 \ 435.4 \pm 9.5 \end{array}$	$egin{array}{cccc} 0.9 \ / \ 1 \ 0.0 \ / \ 1 \ 4.8 \ / \ 3 \end{array}$	28 36 91 19 53
p_T^{ℓ} p_T^{ν} $m_T \& p_T^{\ell}$ $m_T \& p_T^{\nu}$	Electrons	✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓	$\begin{array}{c} 80 \ 421.2 \pm 11.9 \\ 80 \ 427.7 \pm 13.8 \\ 80 \ 435.4 \pm 9.5 \\ 80 \ 437.9 \pm 9.7 \end{array}$	$\begin{array}{c} 0.9 \ / \ 1 \\ 0.0 \ / \ 1 \\ 4.8 \ / \ 3 \\ 2.2 \ / \ 3 \end{array}$	28 36 91 19 53 78
$p_T^\ell \ p_T^ u_T \ \& \ p_T^\ell \ m_T \ \& \ p_T^\ell \ m_T \ \& \ p_T^ u_T \ \& \ u_T^ u_T \ \& u_T^ u_T^ u_T \ \& u_T^ u_T^ u_T^ u_T^ u_T^ u_T^ u_T^ u_T^ $	Electrons ✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓	$\begin{array}{c} 80 \ 421.2 \pm 11.9 \\ 80 \ 427.7 \pm 13.8 \\ 80 \ 435.4 \pm 9.5 \\ 80 \ 437.9 \pm 9.7 \\ 80 \ 424.1 \pm 10.1 \end{array}$	$\begin{array}{c} 0.9 \ / \ 1 \\ 0.0 \ / \ 1 \\ 4.8 \ / \ 3 \\ 2.2 \ / \ 3 \\ 1.1 \ / \ 3 \end{array}$	28 36 91 19 53 78 19

• Combined electrons (3 fits): $M_W = 80424.6 \pm 13.2 \text{ MeV}, P(\chi^2) = 19\%$

• Combined muons (3 fits): $M_W = 80437.9 \pm 11.0 \text{ MeV}, P(\chi^2) = 17\%$

						Distrib	oution	W_{\uparrow}	-boso:	n mas	s (MeV)		$\chi^2/{ m dof}$
Weights in combination (%)		6)	$m_T(e, u)$		$80\ 429.1 \pm 10.3_{\rm stat} \pm 8.5_{\rm sys}$				$^{\rm st}$	39/48			
l e.g.			~ /	$p_T^\ell(e)$		$80 \ 4$	11.4 =	$\pm 10.7_{s}$	$_{ m stat}\pm11.8_{ m s}$	yst	83/62		
	m _T	р _т	I	p _T ^ν		$p_T^{ u}(e)$		80 4	26.3 =	$\pm 14.5_{s}$	$_{ m stat}\pm11.7_{ m s}$	yst	69/62
е	30	6.		0.9		$m_T(\mu,$	u)	80 4	46.1 =	$\pm 9.2_{\rm st}$	$_{ m at} \pm 7.3_{ m syst}$		50/48
μ	34.2	18	8.7	9.5		$p_T^\ell(\mu)$		$80 \ 4$	28.2 =	$\pm 9.6_{\rm st}$	$_{\mathrm{at}} \pm 10.3_{\mathrm{sys}}$	st	82/62
•				0.0		$p_T^ u(\mu)$		80 4	28.9 =	$\pm 13.1_{s}$	$_{ m stat}\pm10.9_{ m s}$	yst	63/62
						combin	nation	80 4	33.5 =	$\pm 6.4_{\rm st}$	$_{ m at} \pm 6.9_{ m syst}$		7.4/5
			Comb	ination	1	m_T fit	p_T^ℓ :	fit	$p_T^{ u}$, fit	Value (MeV)	$\chi^2/{ m dof}$	Probability
	V				Electr	rons Muons	Electrons	Muons	Electror	ns Muons			(%)
			m_T		\checkmark	\checkmark					$80\ 439.0\pm 9.8$	1.2 / 1	
m _T is	s the mo	ost					\checkmark	\checkmark			$80\ 421.2 \pm 11.9$		
impo	ortant		$p_T^{ u}$	p					\checkmark	\checkmark	$80\ 427.7 \pm 13.8$	/	
			$m_T \&$		V	\checkmark	\checkmark	\checkmark		,	$80\ 435.4\pm9.5$	4.8 / 3	
			$m_T \&$	100001000	\checkmark	\checkmark		/	~	\checkmark	$80\ 437.9\pm9.7$	2.2/3	
			$p_T^\ell \& j$	5	/		V	\checkmark	v	\checkmark	$80\ 424.1 \pm 10.1$	1 A A A A A A A A A A A A A A A A A A A	
			Electro		V	/	✓	\checkmark	×	\checkmark	$\begin{array}{c} 80 \ 424.6 \pm 13.2 \\ 80 \ 437.9 \pm 11.0 \end{array}$		
			All		1	v V	1	v v	5	∨ √	$80\ 433.5 \pm 9.4$	$\begin{vmatrix} 3.0 \\ 7.4 \\ 5 \end{vmatrix}$	
							•	Tab	le S9	•	00 100.0 ± 0.1	1.1 / 0	
					1	1	(0			101 (10.034.34	D (2)	100/
			• (ombi	ned	electron	s (3 fits	s): M _W	$V = 80^{2}$	424.6 ±	= 13.2 MeV,	$P(\chi^2)$) = 19%
			• Combined muons (3 fits): $M_W = 80437.9 \pm 11.0 \text{ MeV}, P(\chi^2) = 17\%$							17%			

New CDF Result (8.8 fb⁻¹) All Fit Uncertainties (MeV)

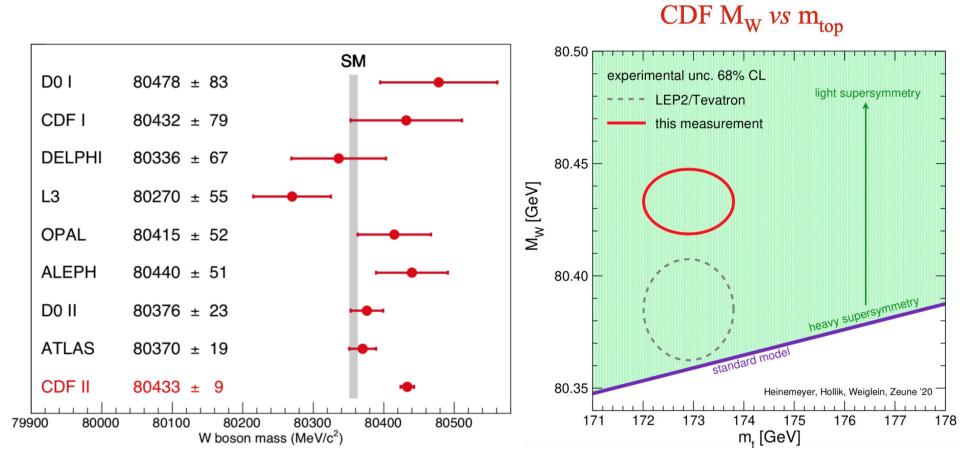
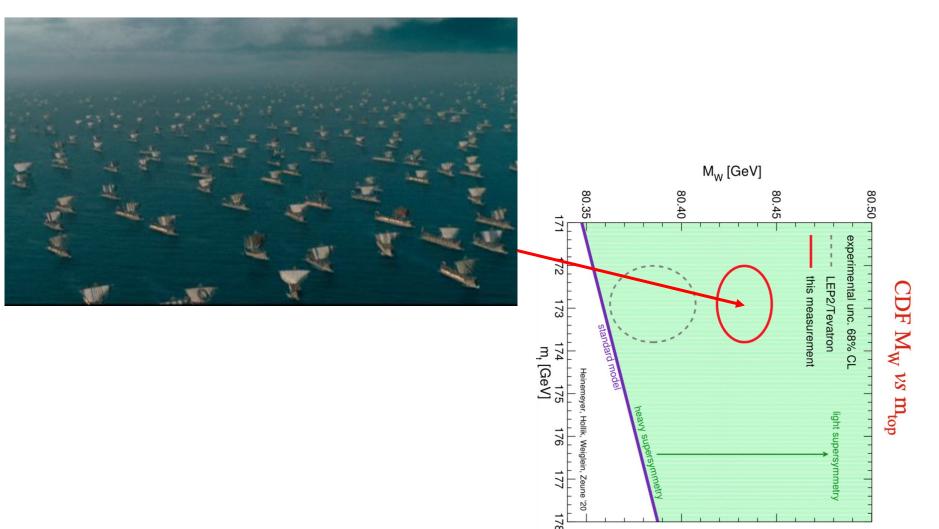

Source of systematic		m_T fit			p_T^ℓ fit			p_T^{ν} fit	
uncertainty	Electrons	Muons	Common	Electrons	Muons	Common	Electrons	Muons	Common
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2
Lepton $u_{ }$ efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0
p_T^Z model	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9
p_T^W/p_T^Z model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4
				•			•		

Table S8

Comparison to result with 2 fb⁻¹

- Statistical precision of the measurement improves by almost a factor of 2
- Analysis improvements have reduced systematic errors
 - COT alignment and drift model and uniformity of the EM calorimeter response
 - accuracy and robustness of detector response and resolution model in the simulation
 - updates of theoretical inputs->see Josh's talk
- Improved understanding of PDFs and track reconstruction would have increased previous measurement by 13.5 MeV to 80,400.5 MeV (consistency with new measurement at the level of 1%)

Comparison



Some concluding throughts

- Fits with three different observables, with two lepton flavors, are all consistent, but inconsistent with SM prediction, and with many other measurements of W mass
- Could there be some common systematic(s) among all six of the CDF analyses?
- Would it be worthwhile to do a W-mass analysis of Z-> ee/μμ?
 - it will be statistics limited, but confirmation of the central value would add an extra degree of robustness.

The face W mass that launched a thousand ships archive papers

We know the direction that all of these ships are sailing. The question is whether it will be worth the trip. (And whether it will take 20 years to get back.)

How to measure the W Mass: A Theory Perspective

Joshua Isaacson Based on: arxiv:2205.02788 In Collaboration with: Yao Fu and C.-P. Yuan Pheno 2022 10 May 2022

Standard Model: W Mass

Standard Model EW Fit

$$\begin{split} M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) &= \frac{\pi \alpha}{\sqrt{2}G_F} \left(1 + \Delta r\right) \\ \Delta r &= \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\rm rem} \left(M_H\right) \,, \end{split}$$

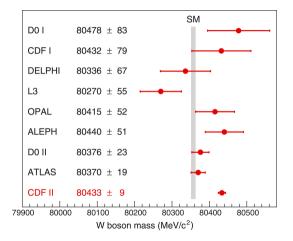
where s_W^2 is the Weinberg angle, $\Delta \alpha$ is the correction to α from the light fermions, $\Delta \rho$ is the correction to the ρ parameter, and $\Delta r_{\rm rem}$ contains all corrections containing the Higgs mass.

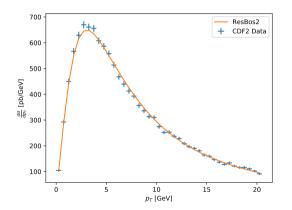
Parameter	Fit Result
G_{μ} [GeV ⁻²]	1.1663787×10^{-5}
$\alpha(0)^{-1}$	137.035999139
$\Delta \alpha^{(5)}_{had}(M_Z^2)$	0.027627 ± 0.000096
M_Z [GeV]	91.1883 ± 0.0021
M_H [GeV]	125.21 ± 0.12
$m_t [{ m GeV}]$	172.75 ± 0.44
M_W [GeV]	80.3591 ± 0.0052

Table reproduced from: HEPFit Group (2112.07274).

Experimental Measurements

- CDF Run II results most precise
- 7σ tension with SM
- 3σ tension between CDF-II and ATLAS result
- Missing LHCb result: 80,354 \pm 32 MeV
- For more details see Joey Huston's talk




Figure reproduced from CDF-II measurement (Science 376, 170).

Theory Calculation

Breakdown of Fixed Order

- Perturbative series has terms proportional to $\alpha_s^n \log^m\left(\frac{p_T^2}{M_W^2}\right)$, $m \leq 2n$
- As $p_T^W \to 0$ the series no longer converges
- Need to include corrections to all orders by resumming the series

Analytic vs. Numeric Resummation

Analytic:

- Formal resummation (focus here on *b*-space CSS resummation)
- Pros:
 - High precision and accuracy
- Cons:
 - Inclusive only
 - Numerically expensive
- $\bullet~{\rm Used}$ by CDF to obtain M_W

Numerical

- Parton Showers (Pythia, Sherpa, Herwig, Dire, Vincia)
- Pros:
 - Exclusive final states
 - Quick
- Cons:
 - Currently only LL with some subleading effects included
- ${\, \bullet \,}$ Used by ATLAS to obtain M_W

d

Resummation

$$\frac{d\sigma_{\rm res}}{Q^2 d^2 q_T^2 dy d\Omega} = \sigma \int \frac{d^2 b}{(2\pi)^2} e^{i \vec{q}_T \cdot \vec{b}} \tilde{W},$$

$$\tilde{W} = e^{-S(b)} C \otimes f(x_A, C_3/b) C \otimes f(x_B, C_3/b)$$

$$S(b) = \int_{\frac{C^2}{b^2}}^{C^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln \left(\frac{C_2^2 Q^2}{\bar{\mu}^2} \right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

[Collins, Soper, Sterman, '85] [...]

Resummation

$$\frac{d\sigma_{\text{res}}}{dQ^2 d^2 q_T^2 dy d\Omega} = \sigma \int \frac{d^2 b}{(2\pi)^2} e^{i \vec{q}_T \cdot \vec{b}} \tilde{W},$$
$$\tilde{W} = \begin{pmatrix} e^{-S(b)} & C \otimes f(x_A, C_3/b) C \otimes f(x_B, C_3/b) \\ \int_{C_1^2}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln\left(\frac{C_2^2 Q^2}{\bar{\mu}^2}\right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

• Electroweak cross section /

[Collins, Soper, Sterman, '85] [...]

J. Isaacson

Resummation

$$\frac{d\sigma_{\text{res}}}{dQ^2 d^2 q_T^2 dy d\Omega} = \sigma \int \frac{d^2 b}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}} \tilde{W},$$
$$\tilde{W} = \frac{e^{-S(b)}}{\int_{C_1^2}^{C_2^2 Q^2}} C \otimes f(x_A, C_3/b) C \otimes f(x_B, C_3/b)$$
$$S(b) = \int_{\frac{C_1^2}{b^2}}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln\left(\frac{C_2^2 Q^2}{\bar{\mu}^2}\right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

- Electroweak cross section
- Sudakov factor /

Resummation

$$\frac{d\sigma_{\text{res}}}{dQ^2 d^2 \vec{q_T} dy d\Omega} = \sigma \int \frac{d^2 b}{(2\pi)^2} e^{i \vec{q_T} \cdot \vec{b}} \tilde{W},$$
$$\tilde{W} = \frac{e^{-S(b)}}{e^{-S(b)}} \frac{C \otimes f(x_A, C_3/b)C \otimes f(x_B, C_3/b)}{C \otimes f(x_B, C_3/b)}$$
$$S(b) = \int_{\frac{C_1^2}{b^2}}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln \left(\frac{C_2^2 Q^2}{\bar{\mu}^2} \right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

- ctroweak cross section
- Sudakov factor
- Collinear factors -

[Collins, Soper, Sterman, '85] [...]

Resummation

$$\frac{d\sigma_{\text{res}}}{dQ^2 d^2 q_T^2 dy d\Omega} = \sigma \int \frac{d^2 b}{(2\pi)^2} e^{i \vec{q}_T \cdot \vec{b}} \tilde{W},$$

$$\tilde{W} = \frac{e^{-S(b)}}{e^{-S(b)}} \frac{C \otimes f(x_A, C_3/b)C \otimes f(x_B, C_3/b)}{C \otimes f(x_B, C_3/b)}$$

$$S(b) = \int_{\frac{C_1^2}{b^2}}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln \left(\frac{C_2^2 Q^2}{\bar{\mu}^2} \right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

• Electroweak cross section
• Sudakov factor
• Collinear factors
• Perturbative Coefficients (A, B, C)

[Collins, Soper, Sterman, '85] [...]

J. Isaacson

		Anomalous D	imension	
Order	Boundary Condition	γ_i (non-cusp)	Γ_{cusp}, β	Fixed Order Matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL'(+NLO)	α_s	1-loop	2-loop	$lpha_s$
NNLL $(+ NLO)$	α_s	2-loop	3-loop	$lpha_s$
NNLL' (+ NNLO)	α_s^2	2-loop	3-loop	α_s^2
$N^{3}LL (+ NNLO)$	α_s^2	3-loop	4-loop	α_s^2
$N^3LL'(+ N^3LO)$	α_s^2 α_s^3	3-loop	4-loop	α_s^3
$N^4LL (+ N^3LO)$	α_s^3	4-loop	5-loop	$lpha_s^{3}$

		Anomalous D	imension	
Order	Boundary Condition	γ_i (non-cusp)	Γ_{cusp}, β	Fixed Order Matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL' (+ NLO)	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL (+ NLO)	$lpha_s$	2-loop	3-loop	α_s
NNLL' (+ NNLO)	α_s^2	2-loop	3-loop	α_s^2
$N^{3}LL (+ NNLO)$	α_s^2	3-loop	4-loop	α_s^2
$N^3LL' (+ N^3LO)$	α_s^3	3-loop	4-loop	α_s^3
$N^4LL (+ N^3LO)$	$lpha_s^{ar{3}}$	4-loop	5-loop	α_s^3

● ■ Accuracy used by CDF

		Anomalous D	imension	
Order	Boundary Condition	γ_i (non-cusp)	Γ_{cusp}, β	Fixed Order Matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL' (+ NLO)	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL (+ NLO)	$lpha_s$	2-loop	3-loop	α_s
NNLL' (+ NNLO)	α_s^2	2-loop	3-loop	α_s^2
$N^{3}LL (+ NNLO)$	α_s^2	3-loop	4-loop	α_s^2
$N^3LL' (+ N^3LO)$	α_s^3	3-loop	4-loop	α_s^3
$N^4LL (+ N^3LO)$	$lpha_s^{ar{3}}$	4-loop	5-loop	α_s^3

- ■ Accuracy used by CDF
- Current accuracy available in ResBos code

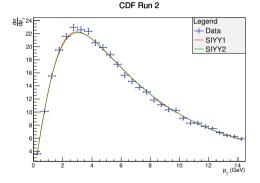
		Anomalous D	imension	
Order	Boundary Condition	γ_i (non-cusp)	Γ_{cusp}, β	Fixed Order Matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL' (+ NLO)	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL (+ NLO)	$lpha_s$	2-loop	3-loop	α_s
NNLL' (+ NNLO)	α_s^2	2-loop	3-loop	α_s^2
$N^3LL (+ NNLO)$	$\alpha_s^{\bar{2}}$	3-loop	4-loop	α_s^2
(N ³ LL' (+ N ³ LO)	$lpha_s^3$	3-loop	4-loop	α_s^3
$N^4LL (+ N^3LO)$	$lpha_s^3$	4-loop	5-loop	α_s^3

- Accuracy used by CDF
- Current accuracy available in ResBos code
- All terms known to this accuracy

Non-Perturbative Fit

$$S(b) = \int_{\frac{C_1^2}{\bar{\mu}^2}}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln\left(\frac{C_2^2 Q^2}{\bar{\mu}^2}\right) A(\bar{\mu}) + B(\bar{\mu}) \right]$$

- Lower limit goes to zero as b goes to infinity
- Requires evaluation of $\alpha_s(C_1/b)$ which is non-perturbative
- Need to introduce a non-perturbative cutoff (*b**-prescription):


$$b^* = \frac{b}{\sqrt{1 + \frac{b^2}{b_{\max}^2}}}$$

BLNY Form

$$S_{NP}(b) = -b^2 \left(g_1 + g_2 \log \left(\frac{Q}{2Q_0} \right) + g_1 g_3 \log(100x_1 x_2) \right)$$

- g_2 tuned to reproduce CDF-II p_T^Z
- M_W vs. M_Z captured in Q dependence
- No flavor dependence included
- No consideration of uncertainty from changing form, but expected to be small

NOTE: SIYY2 is the same functional form as BLNY, but with $b_{max} = 1.5 \text{ GeV}^{-1}$

Flavor Dependence

- Study on flavor dependence for $\sqrt{s}=7~{\rm TeV}~{\rm LHC}$
- $S_{NP}(b) = -b^2(g_a + g_{evo}\log(Q^2/Q_0^2))$, where g_a is the flavor dependent piece
- Found shift could be up to 10 MeV
- Additional studies are required to validate
- Unclear what the global shift would be

Set	u_v	d_v	u_s	d_s	others
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

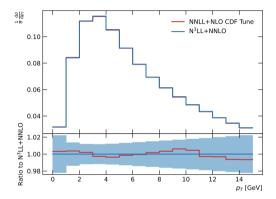
Set	ΔM_W^+		ΔM_W^-		
	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	0	-1	-2	3	
2	0	-6	-2	0	
3	-1	9	-2	-4	
4	0	0	-2	-4	
5	0	4	-1	-3	

Table reproduced from: Phys. Letters B 788 (2019) 542-545

Results

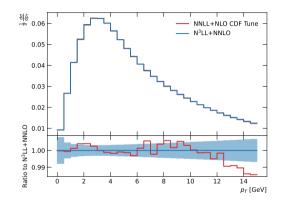
Methodology

Our Procedure:


- Generate pseudodata using N³LL+NNLO prediction
- Tune NNLL+NLO prediction to reproduce $p_T(Z)$ data
- Validate tuned result against $p_T(W)$ data
- Use tuned result to generate mass templates
- Extract W mass from template fit for each observable
- Calculate the mass shift from the input value for pseudodata

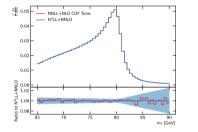
Details:

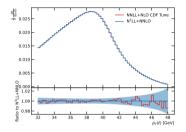
- Pseudodata $M_W = 80,358 \text{ MeV}$
- Cuts:
 - $p_T(Z) < 15 \text{ GeV}, p_T(W) < 15 \text{ GeV}$
 - $30 < p_T(\ell) < 55 GeV$, $30 < p_T(\nu) < 55 \text{ GeV}$
 - $|\eta(\ell)| < 1$
 - $66 < M_{\ell\ell} < 116$ GeV (Z events), $60 < m_T < 100$ GeV (W events)
- Number of Events:
 - 1,811,700 $W \to e \nu$
 - 66,180 $Z \rightarrow ee$
 - 2,424,486 $W
 ightarrow \mu
 u$
 - 238,534 $Z
 ightarrow \mu \mu$

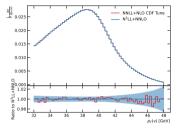


Tuning to Pseudodata

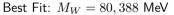
Tuned result:


- Fit to $p_T(Z) < 15 \text{ GeV}$
- $g_2 = 0.662 \text{ GeV}^2$




• $\alpha_S(M_Z) = 0.120$

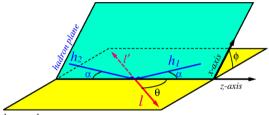
• Tuned PDF set: CT18NNL0_as_120


Results

Best Fit: $M_W = 80,386$ MeV

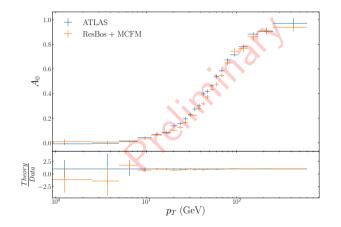
Best Fit: $M_W = 80,389$ MeV

	Mass Shift [MeV]			
Observable	ResBos2	+Detector Effect+FSR		
m_T	1.5 ± 0.5	$0.2 \pm 1.8 \pm 1.0$		
$p_T(\ell)$	3.1 ± 2.1	$4.3\pm2.7\pm1.3$		
$p_T(u)$	4.5 ± 2.1	$3.0 \pm 3.4 \pm 2.2$		


Conclusions

- CDF used ResBos code at NNLL+NLO accuracy
- ResBos v2 is able to go to $N^3LL+NNLO$ accuracy
- ResBos2 corrected major criticism of incorrect angular functions in the ResBos code
- Mimic CDF analysis using pseudoexperiments at N $^{3}LL+NNLO$ accuracy
- Find shift to be consistent with 0 MeV and up to 10 MeV in worse case

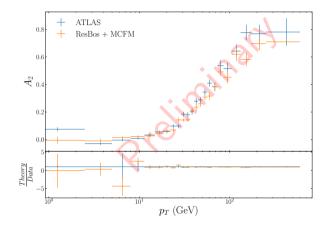
Backup

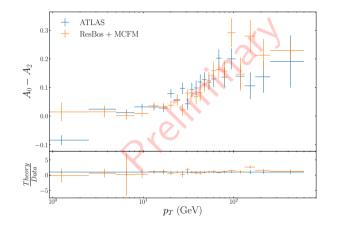

lepton plane

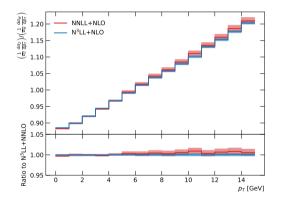
$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}y^{2}\,\mathrm{d}m^{2}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} &= \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}y^{2}\,\mathrm{d}m^{2}}\\ &\left\{ (1+\cos^{2}\theta)+\frac{1}{2}\,A_{0}(1-3\cos^{2}\theta)+A_{1}\,\sin2\theta\,\cos\phi\right.\\ &\left. +\frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos2\phi+A_{3}\,\sin\theta\,\cos\phi+A_{4}\,\cos\theta\right.\\ &\left. +A_{5}\,\sin^{2}\theta\,\sin2\phi+A_{6}\,\sin2\theta\,\sin\phi+A_{7}\,\sin\theta\,\sin\phi\right\}. \end{split}$$

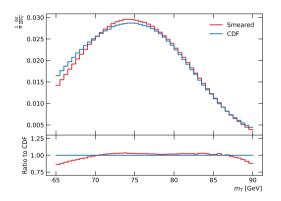
$$\langle P(\cos\theta,\phi)\rangle = \frac{\int P(\cos\theta,\phi) d\sigma(\cos\theta,\phi) d\cos\theta d\phi}{\int d\sigma(\cos\theta,\phi) d\cos\theta d\phi}.$$

$$\begin{split} &\langle \frac{1}{2}(1-3\cos^2\theta)\rangle = \frac{3}{20}(A_0-\frac{2}{3}); \quad \langle\sin 2\theta\cos\phi\rangle = \frac{1}{5}A_1; \quad \langle\sin^2\theta\cos2\phi\rangle = \frac{1}{10}A_2; \\ &\langle\sin\theta\cos\phi\rangle = \frac{1}{4}A_3; \quad \langle\cos\theta\rangle = \frac{1}{4}A_4; \quad \langle\sin^2\theta\sin2\phi\rangle = \frac{1}{5}A_5; \\ &\langle\sin2\theta\sin\phi\rangle = \frac{1}{5}A_6; \quad \langle\sin\theta\sin\phi\rangle = \frac{1}{4}A_7. \end{split}$$


- Well known issue with angular coefficients in the ResBos code at NNLO (No issue with matching to NLO)
- CDF-II only used the NLO so the angular functions are exact to that order
- ResBos only included NNLO corrections to the total rate, but not to the angular functions
- This is an issue with matching to an incomplete NNLO calculation, and not an issue with the resummation or the matching to fixed order
- Only effects larger $p_T~(p_T>30$ GeV, CDF has a cut of $p_T<15$ GeV)
- Has been resolved via matching to MCFM (preliminary results next slides)


NOTE: Uncertainties are purely statistical for ResBos + MCFM


NOTE: Uncertainties are purely statistical for ResBos + MCFM


NOTE: Uncertainties are purely statistical for ResBos + MCFM

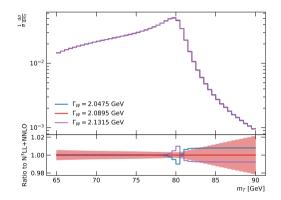
$P_T(Z)/P_T(W)$

- Ratio is stable to higher order corrections at small p_T
- Scale uncertainty only using correlated prediction
- Need to investigate the CDF estimated uncertainty from this ratio

Detector Smearing:

• Fit functional form (Smearing 1): σ b c

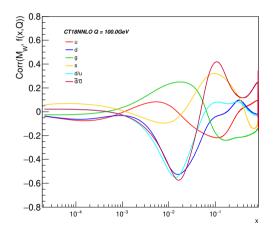
$$\overline{E} = a \oplus \overline{\sqrt{E}} \oplus \overline{E}$$


- Use gaussian with 5%(11%) width for $\ell(\nu)$ (Smearing 2)
- Note results not sensitive to smearing effect if data and theory smeared identically

	Mass Shift [MeV]			
Observable	Smearing 1	Smearing 2		
m_T	$0.2\pm1.8\pm1.0$	$1.0\pm2.1\pm1.3$		
$p_T(\ell)$	$4.3\pm2.7\pm1.3$	$4.5\pm2.6\pm1.4$		
$p_T(u)$	$3.0\pm3.4\pm2.2$	$3.8\pm4\pm2.7$		

Width Effect:

- Central width: $\Gamma_W = 2.0895 \text{ GeV}$
- NLO width proportional to ${\cal M}^3_W$
- Negligible shift


Width	Mass Shift [MeV]		
2.0475 GeV	2.0 ± 0.5		
2.1315 GeV	0.3 ± 0.5		
NLO	1.2 ± 0.5		

	m_T		$p_T(\ell)$		$p_T(u)$	
PDF Set	NNLO	NLO	NNLO	NLO	NNLO	NLO
CT18	0.0 ± 1.3	1.8 ± 1.2	0.0 ± 15.9	2.0 ± 14.3	0.0 ± 15.5	2.9 ± 14.2
MMHT2014	1.0 ± 0.6	2.6 ± 0.6	6.2 ± 7.8	36.7 ± 7.0	3.9 ± 7.5	36.0 ± 6.7
NNPDF3.1	1.1 ± 0.3	2.1 ± 0.4	2.1 ± 3.8	13.5 ± 4.9	5.4 ± 3.7	10.0 ± 4.9
CTEQ6M	N/A	2.8 ± 0.9	N/A	19.0 ± 10.4	N/A	20.9 ± 10.2

- Central value is shift from 80,385 MeV
- Uncertainty is the PDF uncertainty for the given set
- Need to combine to compare to 3.9 MeV from CDF
- Rough estimates say it is consistent with CDF

PDF Correlations

- PDF-induced correlation of M_W and CT18 NNLO error set vs. x at $Q=100~{\rm GeV}$
- Region around $x = \frac{M_W}{\sqrt{s}}$ dominated by \bar{d}/\bar{u} , d/u and d PDFs

