Wayne StatE UNIVERSITY

Heavy Flavor Physics

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA

Outline

- Introduction and Motivation
- How do we make theoretical predictions?
- How well can we calculate?
- Conclusions

Introduction and Motivation

Motivation: high scales

- Flavor physics allows access to new physics at scales beyond reach of current colliders
- E.g. $K-\bar{K}$ mixing, $B-\bar{B}$ mixing probe scales above hundreds of TeV
- See Jure Zupan's Pheno 2019 talk

Motivation: Theoretically Interesting

- Theoretically Interesting: test of basic QFT tools
- Factorization theorems
- Operator product expansion Example: $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ OPE is known to
Perturbative: third order, Non-perturbative: fourth order
- Theoretically Interesting: window to non-perturbative physics

CLEO (2001)

BaBar (2012)

Belle (2016)

- At leading twist the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is the B-meson pdf

How do we make theoretical predictions?

Effective Hamiltonian

- At energies $\ll m_{W}, m_{Z}, m_{t}$ effective Hamiltonian is known For review see [Buras, hep-ph/9806471] e.g. $\bar{B} \rightarrow X_{s} \gamma$
$\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} V_{q s}^{*}\left(C_{1} Q_{1}^{q}+C_{2} Q_{2}^{q}+\sum_{i=3, \ldots, 10} C_{i} Q_{i}+C_{7 \gamma} Q_{7 \gamma}+C_{8 g} Q_{8 g}\right)+$ h.c.
- C_{i} calculable in perturbation theory
- Q_{i} operators with non-perturbative matrix elements

$$
\begin{aligned}
Q_{1}^{q} & =(\bar{q} b)_{V-A}(\bar{s} q)_{V-A} \quad(q=u, c) \\
Q_{7 \gamma} & =\frac{-e}{8 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) F^{\mu \nu} b \\
Q_{8 g} & =\frac{-g_{s}}{8 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) G^{\mu \nu} b
\end{aligned}
$$

Main problem

- Main problem: we know the operators but usually cannot calculate the matrix elements
- Strong interaction operators made of quarks and gluons
- Local: e.g. $\bar{q}(0) \cdots q(0)$
- Non-Local: e.g. $\quad \bar{q}(0) \cdots q(t n) \quad n$ light-cone vector
- What kind of objects do we encounter?
- The general matrix element: $\quad\left\langle f\left(p_{f}\right)\right| O\left|i\left(p_{i}\right)\right\rangle$
O can be local or non-local; p_{i}, p_{f} independent or not List options in increased complexity

Non perturbative objects: $\left\langle f\left(p_{f}\right)\right| O\left|i\left(p_{i}\right)\right\rangle$

1) Decay constant: Local operator, $p_{f}=0$

$$
\langle 0| \bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u|\pi(p)\rangle=i f_{\pi} p^{\mu}
$$

Also diagonal local matrix elements: $\langle\bar{B}| \bar{b} \overrightarrow{\boldsymbol{D}}^{2} b|\bar{B}\rangle=2 M_{B} \mu_{\pi}^{2}$
2) Form factor: Local operator, $p_{f}-p_{i}=q$

$$
\left\langle N\left(p_{f}\right)\right| \sum_{q} e_{q} \bar{q} \gamma^{\mu} q\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma_{\mu} F_{1}^{N}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu}}{2 m} F_{2}^{N}\left(q^{2}\right) q_{\nu}\right] u\left(p_{i}\right)
$$

Flavor: $\left\langle D\left(p_{f}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{i}\right)\right\rangle=f_{+}\left(q^{2}\right)\left(p_{i}+p_{f}\right)^{\mu}+f_{-}\left(q^{2}\right)\left(p_{i}-p_{f}\right)^{\mu}$
3) PDF: Non-local operator, $p_{f}-p_{i}=0$

$$
\phi_{q}(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d t e^{i \xi n \cdot p t}\langle N(p)| \bar{\psi}(0)[0, t n] \frac{\grave{h}}{2} \psi(t n)|N(p)\rangle
$$

Flavor: $S(\omega)=\frac{1}{2 \pi} \frac{1}{2 M_{B}} \int_{-\infty}^{\infty} d t e^{i \omega t}\langle\bar{B}(v)| \bar{b}(0)[0, t n] b(t n)|\bar{B}(v)\rangle$
4) Non-local Form factor: Non-local operator, $p_{i}-p_{f}=q$

$$
\left\langle K^{(*)}\left(p_{f}\right)\right| \bar{s}_{L}(0) \gamma^{\rho} \cdots \tilde{G}_{\alpha \beta} b_{L}(t n)\left|B\left(p_{i}\right)\right\rangle
$$

[Khodjamirian, Mannel, Pivovarov, Wang, JHEP 09, 089 (2010)]

What to do with Non Perturbative Objects?

- What to do with the Non Perturbative Objects?

1) Calculate using some non perturbative method, e.g. Lattice
2) Extract carefully from experiment
3) Use symmetries
4) When all else fails, model

- For example

1) f_{B} calculated from Lattice QCD
2) ϕ_{q} extracted from fits to DIS
3) $S U(3)$ flavor for $B \rightarrow P P$
4) Non-perturbative error for $\bar{B} \rightarrow X_{s} \gamma,\left|V_{u b}\right|$

- Since $m_{b} \sim 5 \mathrm{GeV} \Rightarrow$ two expansion parameters for b-quark decays
- $\alpha_{s}\left(m_{b}\right) \sim 0.2$
- $\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.1$

How well can we calculate?

How well can we calculate?

- Questions:
- What is the current "state of the art"?
- Can the theoretical prediction be improved?
- Will it lead to smaller error bars?
- Examples:
- $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$
- $\left|V_{u b}\right|$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$
- $\bar{B} \rightarrow X_{s} \gamma$
- $\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right)$
- See also "Challenges in Semileptonic B Decays" Workshop (April 2022, Barolo, Italy)
https://indico.cern.ch/event/851900/
- Many more topics in parallel sessions

Flavor topics in parallel sessions

- Monday May 9, 2022
- t-quark mass: Deepak Sathyan, Sagar Airen
- B meson decays to two Baryons: Mark Farino, Tianping Gu
- $\mathcal{A}_{\text {FB }}$ for inclusive semileptonic B decays: Florian Herren
- U-spin in c decays: Margarita Gavrilova
- $K \rightarrow \mu^{+} \mu^{-}$: Mitrajyoti Ghosh
- ϵ_{K} at NLL EW: Zachary Polonsky
- Dark showers at Belle II: Elias Bernreuther
- Tuesday May 10, 2022
- Flavor Constraints on BSM: Shiyuan Xu
- New Physics in B Decays: Bhubanjyoti Bhattacharya
- BSM Physics in $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$:Quinn Campagna
- Belle II results: Lucia Kapitnov
- Heavy QCD Axion at Belle II: Vazha Loladze
- New physics is $B \rightarrow K \nu \bar{\nu}$: Rusa Mandal
- Please let me know if I missed your flavor talk title

$V_{c b} \mid$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Semileptonic $b \rightarrow c$ transition

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} C_{1}(\mu) V_{c b} \bar{\ell} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) b
$$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+\cdots
$$

- $c_{0}\left\langle O_{0}\right\rangle$ is a free quark decay. At tree level same as $\mu \rightarrow e \bar{\nu}_{e} \nu_{\mu}$
- c_{i}^{j} perturbative in α_{s}
- $\left\langle O_{i}\right\rangle$ are non perturbative, can be extracted from experiment
- $\left\langle O_{0}\right\rangle=\langle\bar{B}| \bar{b} b|\bar{B}\rangle=1$
$-\left\langle O_{2}^{\text {kin. }}\right\rangle=\langle\bar{B}| \bar{b}(i D)^{2} b|\bar{B}\rangle \Rightarrow \mu_{\pi}^{2}$
- $\left\langle O_{2}^{\text {mag. }}\right\rangle=\langle\bar{B}| \bar{b} \sigma_{\mu \nu} G^{\mu \nu} b|\bar{B}\rangle \Rightarrow \mu_{G}^{2}$ can be extracted from $M_{B^{*}}-M_{B}$

$V_{c b} \mid$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- Using the optical theorem can calculate $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ as an OPE

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- $1 / m_{b}^{0}$: One operator
- $1 / m_{b}$: No operators
- $1 / m_{b}^{2}$: Two operators
[Blok, Koyrakh, Shifman, Vainshtein PRD 49, 3356 (1994)]
[Manoar, Wise PRD 49, 1310 (1994)]
- $1 / m_{b}^{3}$: Two operators
[Gremm, Kapustin, PRD 55, 6924 (1997)]
- [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]:
- $1 / m_{b}^{4}$: Nine operators
- $1 / m_{b}^{5}$: Eighteen operators
- All above: c_{i}^{j} at $\mathcal{O}\left(\alpha_{s}^{0}\right)$. Are these all the possible operators?

Interlude

- Are these all the possible operators?
- Question answered in [Gunawardna, GP JHEP 1707137 (2017)]
- List such operators, in principle, to arbitrary dimension
- NRQED and NRQCD bilinear ops., in principle, to arbitrary dimension
- See also [Kobach, Pal PLB 772225 (2017)] using Hilbert series
- Are these all the possible operators? No.
- For $1 / m_{b}^{0}, 1 / m_{b}^{2}, 1 / m_{b}^{3}$ these are all the possible operators
- $1 / m_{b}^{4}$: 9 operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 11$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- $1 / m_{b}^{5}: 18$ operators at $\mathcal{O}\left(\alpha_{s}^{0}\right) \Rightarrow 25$ operators at $\mathcal{O}\left(\alpha_{s}\right)$ or higher
- These are unknown but extremely small

For example: $\alpha_{s}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{4} \sim 0.2 \cdot(0.1)^{4} \sim 10^{-5}$

Power corrections

- $1 / m_{b}^{4}, 1 / m_{b}^{5}$ matrix elements extracted from $\bar{B} \rightarrow X_{c} \bar{\nu}_{\ell}$ [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2

Default fit results: the second and third columns give the central values and standard deviations.

$m_{b}^{k i n}$	4.546	0.021	r_{1}	0.032	0.024
$\bar{m}_{c}(3 \mathrm{GeV})$	0.987	0.013	r_{2}	-0.063	0.037
μ_{π}^{2}	0.432	0.068	r_{3}	-0.017	0.025
μ_{G}^{2}	0.355	0.060	r_{4}	-0.002	0.025
ρ_{D}^{3}	0.145	0.061	r_{5}	0.001	0.025
$\rho_{L S}^{3}$	-0.169	0.097	r_{6}	0.016	0.025
\bar{m}_{1}	0.084	0.059	r_{7}	0.002	0.025
\bar{m}_{2}	-0.019	0.036	r_{8}	-0.026	0.025
\bar{m}_{3}	-0.011	0.045	r_{9}	0.072	0.044
\bar{m}_{4}	0.048	0.043	r_{10}	0.043	0.030
\bar{m}_{5}	0.072	0.045	r_{11}	0.003	0.025
\bar{m}_{6}	0.015	0.041	r_{12}	0.018	0.025
\bar{m}_{7}	-0.059	0.043	r_{13}	-0.052	0.031
\bar{m}_{8}	-0.178	0.073	r_{14}	0.003	0.025
\bar{m}_{9}	-0.035	0.044	r_{15}	0.001	0.025
$\chi^{2} /$ dof	0.46		r_{16}	0.001	0.025
$B R(\%)$	10.652	0.156	r_{17}	-0.028	0.025
$\mathbf{1 0}\left\|\mathbf{V}_{\mathbf{c b}}\right\|$	$\mathbf{4 2 . 1 1}$	$\mathbf{0 . 7 4}$	r_{18}	-0.001	0.025

- "The higher power corrections have a minor effect on $\left|V_{c b}\right| \ldots$ There is a -0.25% reduction in $\left|V_{c b}\right| "$

State of the art: $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

- What is the current "state of the art"? As of 2021

$$
\Gamma \sim c_{0}\left\langle O_{0}\right\rangle+c_{2}^{j} \frac{\left\langle O_{2}^{j}\right\rangle}{m_{b}^{2}}+c_{3}^{j} \frac{\left\langle O_{3}^{j}\right\rangle}{m_{b}^{3}}+c_{4}^{j} \frac{\left\langle O_{4}^{j}\right\rangle}{m_{b}^{4}}+c_{5}^{j} \frac{\left\langle O_{5}^{j}\right\rangle}{m_{b}^{5}}+\cdots
$$

- c_{0} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right), \mathcal{O}\left(\alpha_{s}^{2}\right), \mathcal{O}\left(\alpha_{s}^{3}\right)$ for selected observables
- \mathcal{C}_{2}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$
- c_{3}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right), \mathcal{O}\left(\alpha_{s}^{1}\right)$ for selected observables
- c_{4}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right)$
- \mathcal{C}_{5}^{j} known at $\mathcal{O}\left(\alpha_{s}^{0}\right)$
- State of the art Inclusive $\left|V_{c b}\right|=42.16(51) \cdot 10^{-3}$
[Bordone, Capdevila, Gambino, PLB 822, 136679 (2021)]
- HFLAV 2021: Exclusive $\left|V_{c b}\right|=38.90(53) \cdot 10^{-3}$
- Exclusive/Inclusive $\left|V_{c b}\right|$ puzzle remains
- Can the theoretical prediction be improved?

Yes, c_{3}^{j} at $\mathcal{O}\left(\alpha_{s}^{1}\right)$ fully differential

- Will it lead to smaller error bars? Probably

$V_{u b} \mid$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$

- $\left|V_{u b}\right|$ plays a role in the unitarity triangle fit Like $\left|V_{c b}\right|,\left|V_{u b}\right|$ inclusive is larger than $\left|V_{u b}\right|$ exclusive
- PDG August 2021 review
- Inclusive $\left|V_{u b}\right|=\left(4.13 \pm 0.12_{-0.14}^{+0.13} \pm 0.18\right) \cdot 10^{-3}$
- Exclusive $\left|V_{u b}\right|=(3.70 \pm 0.10 \pm 0.12) \cdot 10^{-3}$

$\left|V_{u b}\right|$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}:$ Framework

- If we could measure total $\Gamma\left(\bar{B} \rightarrow X_{u} I \bar{\nu}\right)$ we could use a local OPE

$$
d \Gamma \sim \sum_{i, j} c_{i}^{j} \frac{\left\langle O_{i}^{j}\right\rangle}{m_{b}^{i}}
$$

c_{i}^{j} perturbative, $\left\langle O_{i}^{j}\right\rangle$ non-perturbative numbers

- Since $\Gamma\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}\right) \gg\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}\right)$ total rate cannot be measured Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$M_{X}^{2} \sim m_{b}^{2}$	local OPE	("OPE region")
$M_{X}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$	Non local OPE	("end point region")
$M_{X}^{2} \sim \Lambda_{\mathrm{QCD}}^{2}$	No inclusive description	("resonance region")

$\left|V_{u b}\right|$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$: Framework

Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \wedge_{Q C D}$

- Not inclusive enough for local OPE, but non-local OPE still possible

$$
d \Gamma \sim H \cdot J \otimes S+\mathcal{O}\left(\frac{1}{m_{b}}\right)
$$

- Can factorize perturbative coefficient into hard H and jet J functions
- S is a non-perturbative "shape function" (B-meson PDF)
- At leading power in $\Lambda_{\mathrm{QCD}} / m_{b}, S$ is $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum

Recent work: SIMBA Collaboration

- At leading power in $\Lambda_{\mathrm{QCD}} / m_{b}, S$ is $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum
- Recent extraction by the SIMBA (Analysis of B-Meson Inclusive Spectra) Collaboration [Bernlochner, Lacker, Ligeti, Stewart, F. Tackmann, K. Tackmann, PRL 127, 102001 (2021)]

$\left|V_{u b}\right|$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$: Framework

- At subleading power in $\Lambda_{\mathrm{QCD}} / m_{b}$

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\cdots
$$

- Several subleading shape functions (SSF) appear (s_{i}) ("higher twist")
- Different linear combinations for $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ and $\bar{B} \rightarrow X_{s} \gamma$
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions")
- Shape functions moments are related to universal matrix elements: E.g. leading shape function: $1^{\text {st }}$ moment $\leftrightarrow m_{b}, 2^{\text {nd }}$ moment $\leftrightarrow \mu_{\pi}^{2}$
- Different theoretical frameworks for $\left|V_{u b}\right|$ extractions:
- Use similar perturbative inputs, currently $\mathcal{O}\left(\alpha_{s}\right)$
- Differ in how they extract (or model) S
- Differ in how they treat power corrections

Recent work: Inclusive $\left|V_{u b}\right|$ from Belle data

- Current extractions used
- BLNP [Lange, Neubert, GP, PRD 72, 073006, (2005)]
- DGE [Andersen, Gardi, JHEP 01, 097, (2006)]
- GGOU [Gambino, Giordano, Ossola, Uraltsev, JHEP 10, 058, (2007)]
- ADFR [Aglietti, Di Lodovico, Ferrera, Ricciardi, EPJC 59, 831, (2009)]
- Recent work: Inclusive $\left|V_{u b}\right|$ from Belle data [L. Cao et al. [Belle], PRD 104, 012008 (2021)]

Recent work: Inclusive $\left|V_{u b}\right|$ from Belle data

- Recent work: Inclusive $\left|V_{u b}\right|$ from Belle data [L. Cao et al. [Belle], PRD 104, 012008 (2021)]

- State of the art: theoretical framework developed before 2010
- Can the theoretical prediction be improved?
- Yes, many NNLO calculations are known:
- H, J at $\mathcal{O}\left(\alpha_{s}^{2}\right), j_{i} / m_{b}$ at $\mathcal{O}\left(\alpha_{s}\right)$, resolved photon contributions
- Not fully combined yet [Gunawardana, Lange, Mannel, Olschewsky, Vos, GP, to appear]
- Will it lead to smaller error bars? Not necessarily

$$
\bar{B} \rightarrow X_{s} \gamma
$$

- $\bar{B} \rightarrow X_{s} \gamma$ BSM probe. PDG 2021: $\mathrm{Br}=(3.49 \pm 0.19) \cdot 10^{-4}$
- 2015 SM prediction of branching ratio $(3.36 \pm 0.23) \cdot 10^{-4}$ [M. Misiak et al., PRL 114, 221801 (2015)]
- Largest uncertainty $\sim 5 \%$ is non-perturbative from "resolved photons" At $\Lambda_{Q C D} / m_{b}$ [Benzke, Lee, Neubert, GP JHEP 1008, 099 (2010)]:

Top line $Q_{7 \gamma}-Q_{8 g}$, Bottom left: $Q_{8 g}-Q_{8 g}$, Bottom right: $Q_{1}-Q_{7 \gamma}$

- SM CP asymmetry dominated by $Q_{1}^{q}-Q_{7 \gamma}:-0.6 \%<\mathcal{A}_{X_{s} \gamma}^{S M}<2.8 \%$ [Benzke, Lee, Neubert, GP PRL 106, 141801 (2011)] PDG 2021: $\mathcal{A}_{X_{s} \gamma}=1.5 \% \pm 1.1 \%$. Can we improve this?

$$
\bar{B} \rightarrow X_{s} \gamma
$$

- At $\Lambda_{\mathrm{QCD}} / m_{b}$: resolved photons from $Q_{7 \gamma}-Q_{8 g}, Q_{8 g}-Q_{8 g}, Q_{1}-Q_{7 \gamma}$
- $Q_{7 \gamma}-Q_{8 g}$ constrained by isospin asymmetry $\bar{B}^{0 / \pm} \rightarrow X_{s} \gamma$ uncertainty reduced by a Belle measurement [Watanuki et al. [Belle Collaboration] PRD 99, 032012 (2019)]
- $Q_{8 g}-Q_{8 g}$ is hard to improve
- $Q_{1}-Q_{7 \gamma}$ depends on a non-perturbative function $g_{17}\left(\omega, \omega_{1}\right)$ whose moments can be extracted from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ OPE
- 2010 analysis only had 2 non-zero moments [Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments [Gunawardna, GP JHEP 11141 (2019)]

$$
\begin{aligned}
& \left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4} \\
& \left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4} \\
& \left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5} .
\end{aligned}
$$

Data from [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

$$
\bar{B} \rightarrow X_{s} \gamma
$$

- Using moments model $Q_{1}-Q_{7 \gamma}$ resolved photon
- New estimate of uncertainty: Total rate $\downarrow 50 \%$, CP asymmetry $\uparrow 33 \%$ [Gunawardna, GP JHEP 11141 (2019)] See Ayesh Gunawardna Pheno 2019 talk
- 2015 SM prediction of branching ratio $(3.36 \pm 0.23) \cdot 10^{-4}$ [M. Misiak et al., PRL 114, 221801 (2015)]
- 2020 SM prediction of branching ratio $(3.40 \pm 0.17) \cdot 10^{-4}$ [Misiak, Rehman, Steinhauser, JHEP 06, 175 (2020)]
- Using different models, including some $\Lambda_{Q C D}^{2} / m_{b}^{2}$ corrections and larger m_{c} range, a smaller reduction was found in [Benzke, Hurth PRD 102114024 (2020)]
- Can the theoretical prediction be improved?

Yes, m_{c} can be better controlled by an NLO analysis of $Q_{1}-Q_{7 \gamma}$

- Will it lead to smaller error bars? Not necessarily
$\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right):$ Form factors
- For exclusive decays, e.g., $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$, we need form factors

$$
\left\langle D\left(p_{f}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{i}\right)\right\rangle=f_{+}\left(q^{2}\right)\left(p_{i}+p_{f}\right)^{\mu}+f_{-}\left(q^{2}\right)\left(p_{i}-p_{f}\right)^{\mu}
$$

- Unknown functional form, but known analytic structure in $t=q^{2}$:

[Richard J. Hill, FPCP 2006 proceedings (hep-ph/0606023)]
- For H, L mesons:
- $H \rightarrow L$ semileptonic data: $0 \leq t \leq\left(m_{H}-m_{L}\right)^{2}$ (blue line)
- Singularity starts at $\bar{H} L$ threshold $t=\left(m_{H}+m_{L}\right)^{2}$ (dashed curves) Outside the cut the form factor is analytic
$\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right): z$ expansion
- Form factor analytic outside a cut $t \in\left[t_{\text {cut }}, \infty\right]$
- z expansion: map domain of analyticity onto unit circle

$$
z\left(t, t_{\mathrm{cut}}, t_{0}\right)=\frac{\sqrt{t_{\mathrm{cut}}-t}-\sqrt{t_{\mathrm{cut}}-t_{0}}}{\sqrt{t_{\mathrm{cut}}-t}+\sqrt{t_{\mathrm{cut}}-t_{0}}}
$$

where $z\left(t_{0}, t_{\text {cut }}, t_{0}\right)=0$

- Expand form factor in a Taylor series in z: $f\left(q^{2}\right)=\sum_{k=0}^{\infty} a_{k}\left[z\left(q^{2}\right)\right]^{k}$
$\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right): z$ expansion
- z expansion: map domain of analyticity onto unit circle

$$
z\left(t, t_{\mathrm{cut}}, t_{0}\right)=\frac{\sqrt{t_{\mathrm{cut}}-t}-\sqrt{t_{\mathrm{cut}}-t_{0}}}{\sqrt{t_{\mathrm{cut}}-t}+\sqrt{t_{\mathrm{cut}}-t_{0}}}
$$

[Y. Aoki et al.,[FLAG Review 2021], arXiv:2111.09849 (hep-lat)

- Data in z has less "structure": can extract only few coefficients
$\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right)$: Unitarity bound

- Expand form factor in a Taylor series in z: $f\left(q^{2}\right)=\sum_{k=0}^{\infty} a_{k}\left[z\left(q^{2}\right)\right]^{k}$
- For H, L mesons:
- $H \rightarrow L$ semileptonic data: $0 \leq t \leq\left(m_{H}-m_{L}\right)^{2}$ (blue line)
- Singularity starts at $\bar{H} L$ threshold $t=\left(m_{H}+m_{L}\right)^{2}$ (dashed curves)
- Crossing symmetry and unitarity: meson unitarity bound $\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \leq 1$, e.g. [Boyd, Grinstein, Lebed, NPB 461, 493 (1996)]
- Bounds ensure form factor extraction is model-independent
- For H, L baryons:
- $H \rightarrow L$ semileptonic data: $0 \leq t \leq\left(m_{H}-m_{L}\right)^{2}$ (blue line)
- Singularity starts at meson threshold, no unitarity bound [Hill, GP PRD 82, 113005 (2010)]

$V_{c b} \mid$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right):$ Unitarity bound

- State of the art: unitarity bounds not imposed for Lattice extraction of $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ form factors, e.g. [A. Bazavov et al. [Fermilab Lattice and MILC], arXiv:2105.14019 (hep-lat)]

Lattice QCD				
Lattice + BaBar	Lattice + Belle	Lattice + both		
a_{0}	$0.0330(12)$	$0.0331(12)$	$0.0325(10)$	$0.0320(10)$
a_{1}	$-0.155(55)$	$-0.089(40)$	$-0.160(44)$	$-0.148(31)$
a_{2}	$-0.12(98)$	$-0.16(21)$	$-0.70(94)$	$-0.60(22)$
b_{0}	$0.01229(23)$	$0.01229(22)$	$0.01238(22)$	$0.01246(22)$
b_{1}	$-0.003(12)$	$0.0123(69)$	$0.015(10)$	$0.0038(46)$
b_{2}	$0.07(53)$	$0.36(17)$	$-0.30(24)$	$0.02(12)$
c_{1}	$-0.0058(25)$	$-0.0008(11)$	$0.0010(17)$	$0.00008(94)$
c_{2}	$-0.013(91)$	$0.054(46)$	$0.035(57)$	$0.080(36)$
c_{3}		$-0.12(83)$	$-0.34(76)$	$-1.11(56)$
d_{0}	$0.0509(15)$	$0.0516(15)$	$0.0521(15)$	$0.0526(14)$
d_{1}	$-0.327(67)$	$-0.197(50)$	$-0.179(49)$	$-0.194(43)$
d_{2}	$-0.03(96)$	$0.19(92)$	$-0.01(90)$	$-0.004(898)$
$\chi^{2} /$ dof	$0.64 / 3$	$9.28 / 5$	$111 / 81$	$126 / 84$
$\sum_{i}^{N} a_{i}^{2}$	$0.04(24)$	$0.035(71)$	$0.5(1.3)$	$0.39(27)$
$\sum_{i}^{N}\left(b_{i}^{2}+c_{i}^{2}\right)$	$0.005(70)$	$0.15(18)$	$0.21(48)$	$1.2(1.3)$
$\sum_{i}^{N} d_{i}^{2}$	$0.110(61)$	$0.08(35)$	$0.035(25)$	$0.040(15)$
$\left\|V_{c b}\right\| \times 10^{3}$		$39.66(91)$	$38.18(82)$	$38.40(74)$

- Unitarity bounds not imposed but respected within errors
- "Unitary-required priors" on coefficients are used
- Imposing a unitarity bound does not change $\left|V_{c b}\right|$ and $R\left(D^{(*)}\right)$

$\left|V_{u b}\right| \&\left|V_{c b}\right|$ state of the art

$R(D)$ and $R\left(D^{*}\right)$: state of the art

$$
R\left(D^{(*)}\right) \equiv \frac{\operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)}, \quad \ell=e, \mu
$$

$\left|V_{c b}\right|$ and $R\left(D^{(*)}\right)$: Dispersion Matrix approach

- Silvano Simula talk "Challenges in Semileptonic B Decays" Workshop (April 2022, Barolo, Italy) https://indico.cern.ch/event/851900/
- Use Dispersion Matrix (DM) approach [Martinelli, Simula and Vittorio, PRD 105, 034503 (2022), arXiv:2109.15248(hep-ph)], [Martinelli, Naviglio, Simula, Vittorio, arXiv:2204.05925 (hep-ph)]

Conclusions

Conclusions

- Flavor physics probes very high scales and advanced theoretical tools
- This decade will be very exciting with, e.g., LHCb and Belle II data
- Puzzles and tensions motivate further theoretical work
- A big challenge is controlling non-perturbative effects
- Discussed "state of the art" of
- $\left|V_{c b}\right|$ and $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$
- $\left|V_{u b}\right|$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}_{\ell}$
- $\bar{B} \rightarrow X_{s} \gamma$
- $\left|V_{c b}\right|$ and $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}, R\left(D^{(*)}\right)$
- Future: improve theory, but not necessarily smaller error bars
- More work to do!

Pheno

Precision measurement of $\left|V_{u b}\right|$

Gil Paz
Institute for High-Energy Phenomenology
Newman Laboratory for Elementary-Particle Physics, Cornell University
In Collaboration with
Stefan W. Bosch, Björn O. Lange, Matthias Neubert (hep-ph/0402094, hep-ph/0403223)

