

Physics with neutrino experiments

> Xiao Luo UC Santa Barbara Pheno 2022 @ Pittsburg 05/10/22

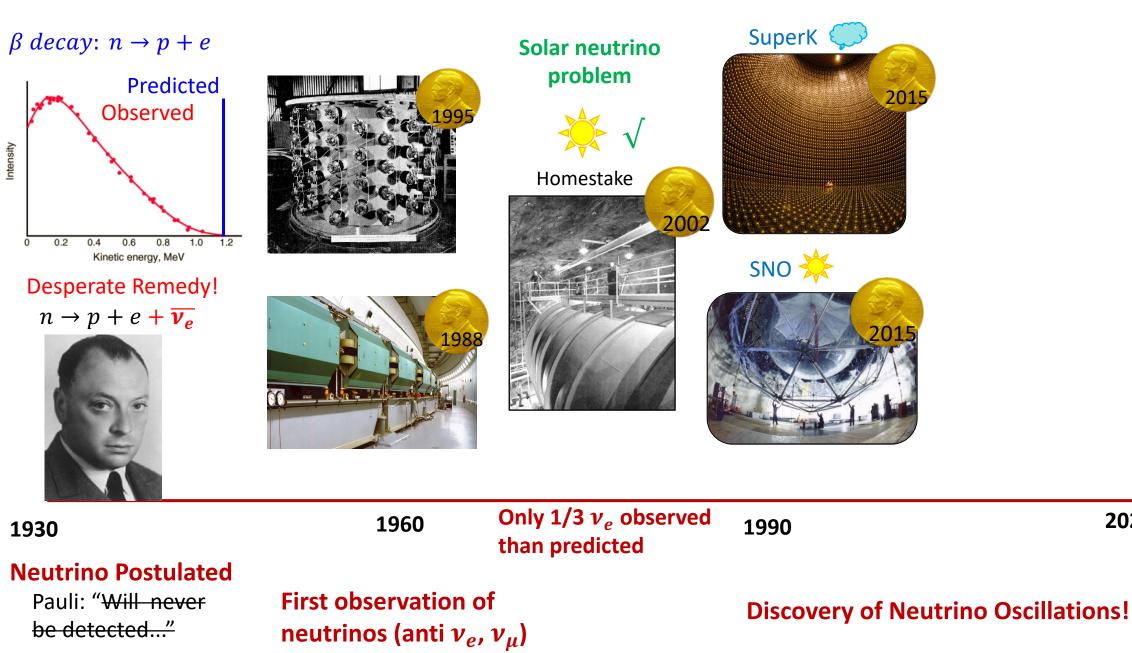
 β decay: $n \rightarrow p + e$

1930

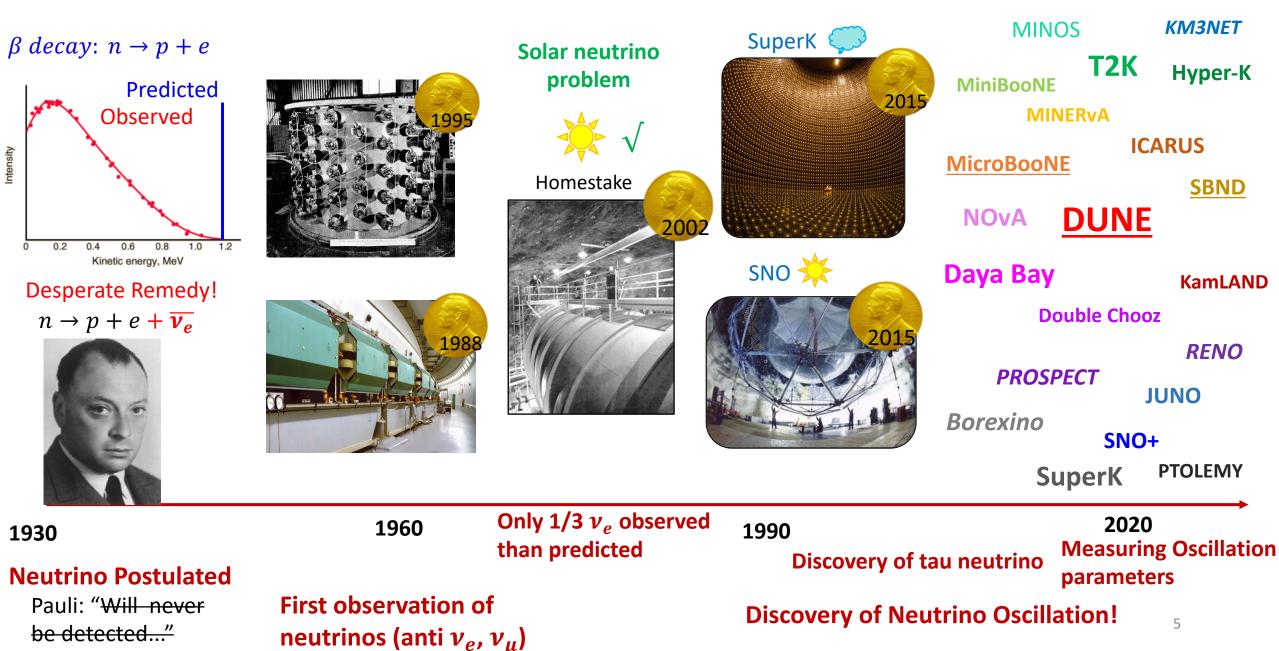
1960

1990

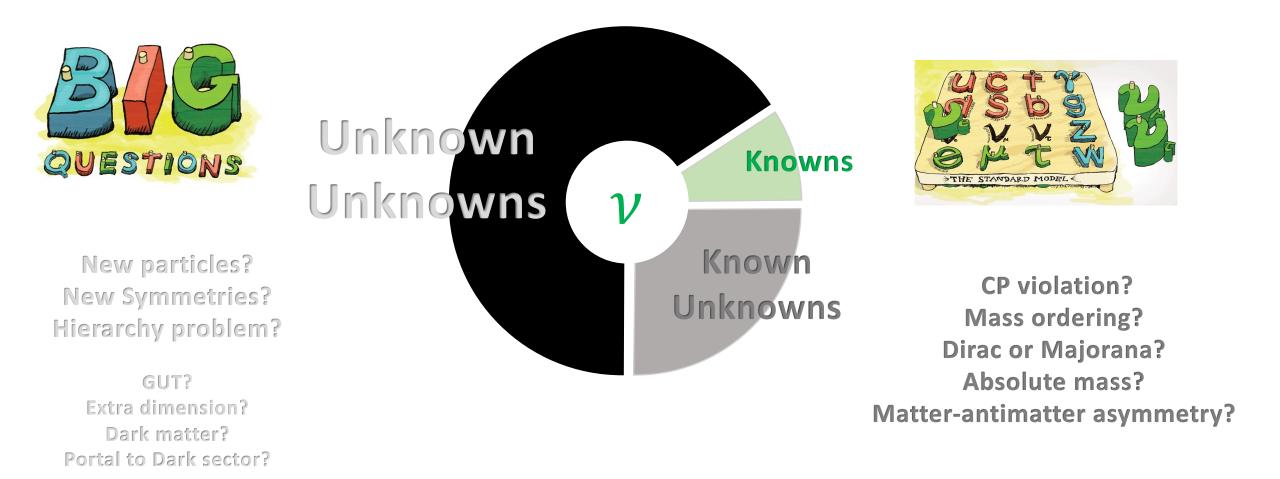

2020


Neutrino Postulated

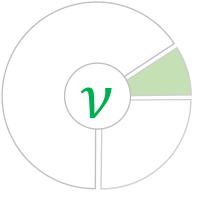
Pauli: "Will never be detected..."


 β decay: $n \rightarrow p + e$ Predicted **Observed** Intensity 0.2 0.6 0.8 1.0 0 0.4 1.2 Kinetic energy, MeV **Desperate Remedy!** $n \rightarrow p + e + \overline{\nu_e}$

2020

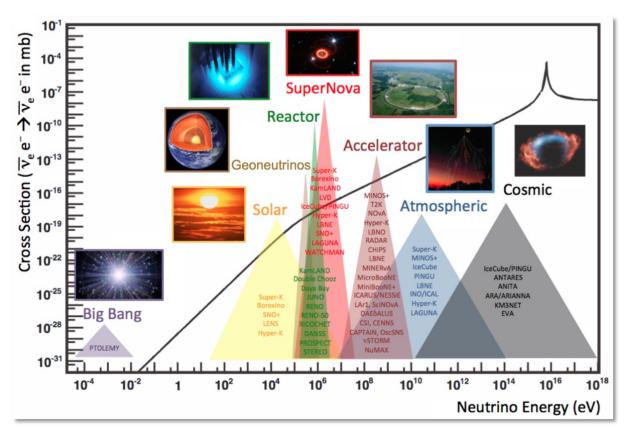


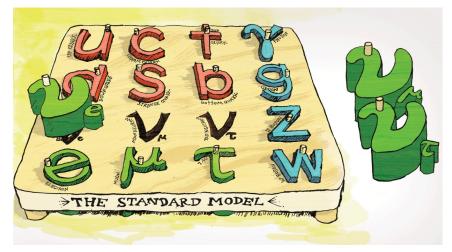
PINGU


IceCube

AINITA

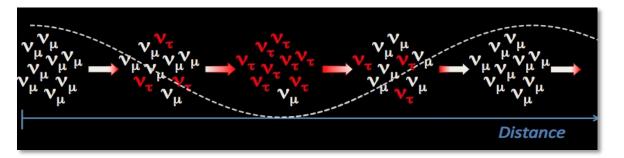
Neutrinos are the least known particles in the Standard Model

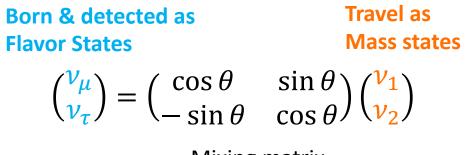



Mysterious neutrinos provide the ideal experimental playground for new physics discovery

The Knowns - "ν-101"

- Electric charge neutral lepton
- 3 flavors: v_e , v_μ , v_τ
- Interact only through weak interaction
- Only left handed ν 's are observed



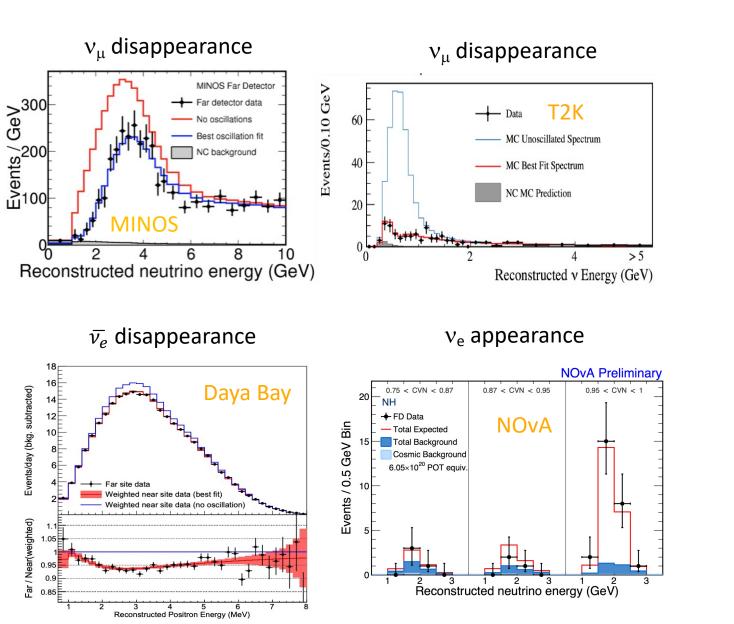


- Most abundant matter particle
 - "Wild": cosmic, sun, earth, bananas!
 - "Artificial": accelerator, reactor
- Energy span over 20 orders of magnitude
- Weakly interact: cross-section ~10⁻³⁸ cm²/GeV
- Oscillate -> have mass

Neutrino Oscillation

Neutrino oscillation

Mixing matrix

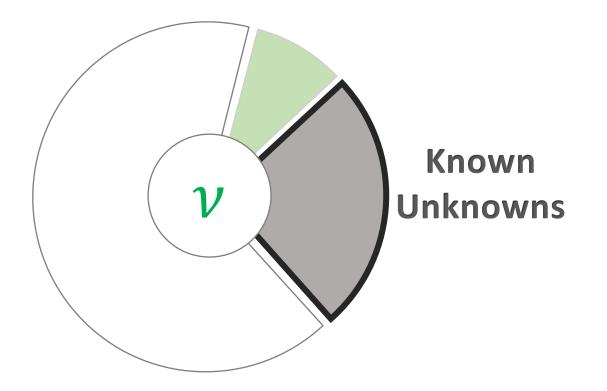

Mixing angle θ determines the amplitude of oscillation

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

 Δm^2 determines the frequency of the oscillation as function of L/E

Experiments choose *L* and neutrino flavors, measure the oscillation probability as a function of neutrino energy (E_{ν}) to determine oscillation parameters θ , Δm^2 .

Measure oscillation parameters

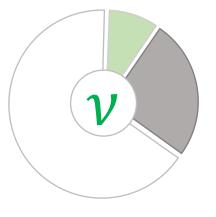


Over two decades of **Oscillation** experiments have established...

$3-\nu$ paradigm

$$|U_{PMNS}| \sim \begin{pmatrix} 0.8 & 0.5 & 0.1 \\ 0.5 & 0.6 & 0.7 \\ 0.3 & 0.6 & 0.7 \end{pmatrix}$$

- **3 mixing angles**: $\theta_{12} \sim 33^{\circ}, \theta_{13} \sim 8^{\circ}, \theta_{23} \sim 45^{\circ}$
- **2 mass splittings:** $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$
- 1 CP violation phase δ_{CP}



Other oscillation parameters?

What's the absolute neutrino masses?

What's the origin of neutrino mass?

Are there more than 3 types of neutrinos?

The Known Unknowns – More oscillation parameters

Mass ordering CP phase δ_{CP} $m_1 > or < m_3$

 θ_{23} Octant > or <45°?

Find answers in long baseline ν oscillation experiments

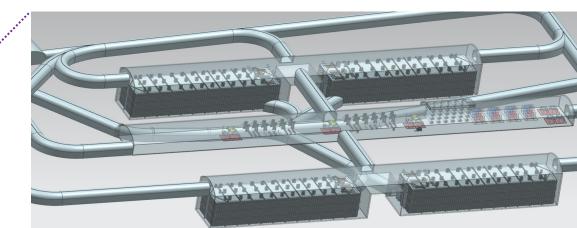
NOvA: 14 kton liquid scintillator cells $E \sim 2 \text{ GeV};$

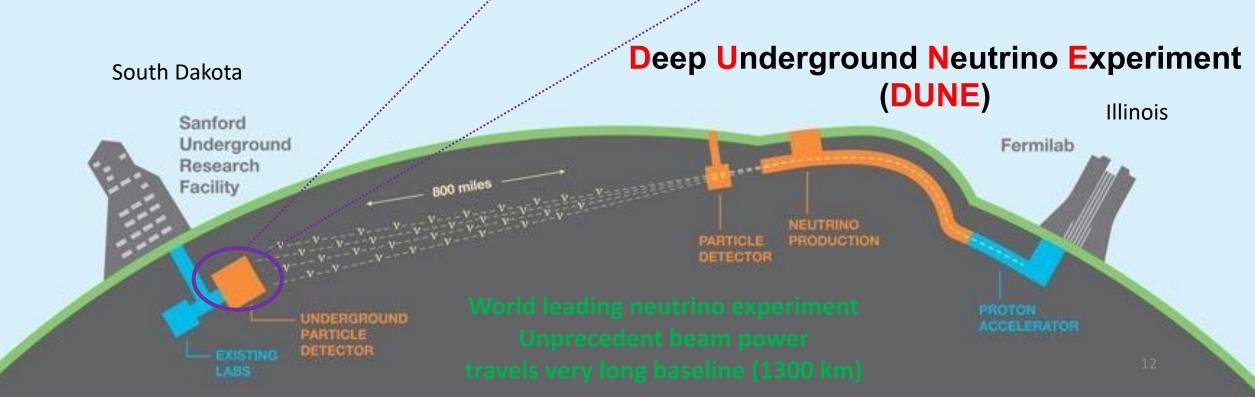
T2K: 50 kton water Cherenkov detector E ~ 0.6 GeV;

Both measure v_{μ} disappearance v_e appearance rates at far detector and constrain the systematics using near detector data.

Still relatively low sensitivity δ_{CP} best fits from the two exps. do not agree T2K: Not very completely (depend sensitive on mass ordering)

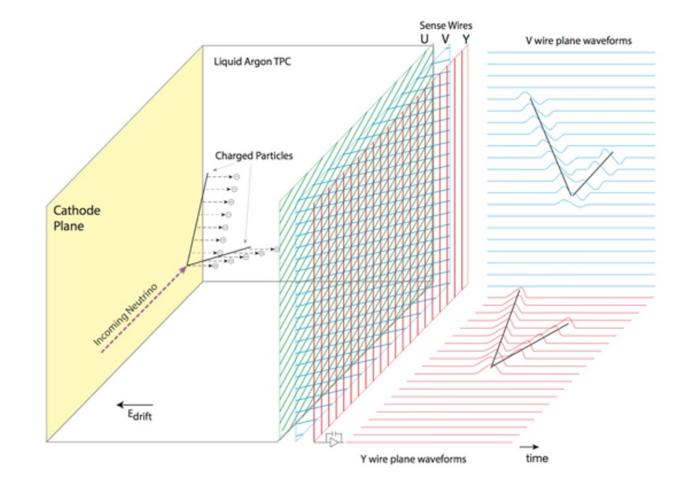
NOvA: Best fit land in Normal Ordering $m_3 > m_1$


No evidence of deviation from maximum mixing Both measure $0.4 < \sin^2 \theta_{23} < 0.6$


Current experiments still cannot provide a clear picture (>3 σ) of these oscillation parameters. How do we move forward?

Next gen. long baseline ν exp.

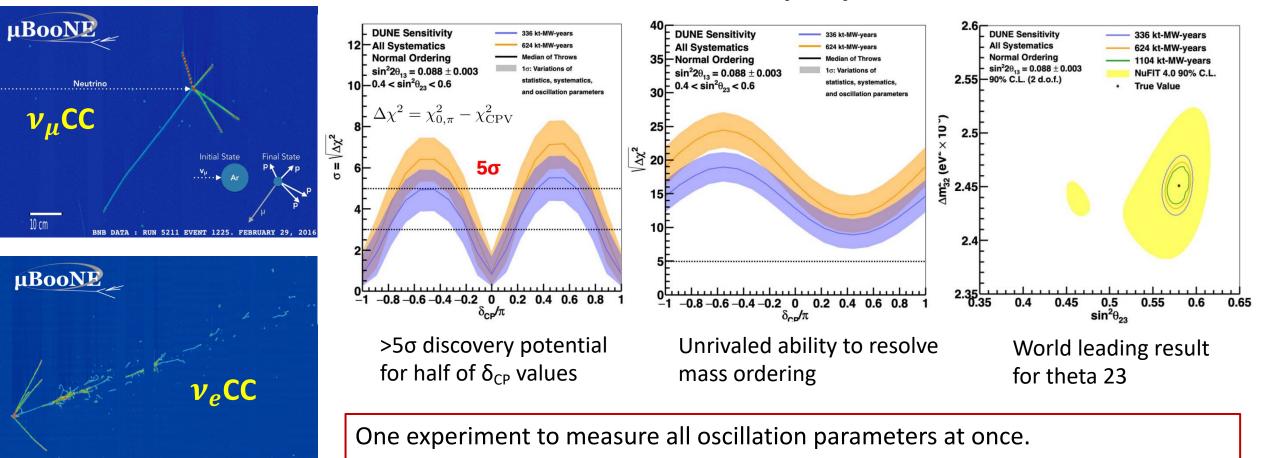
More advanced detectors More optimal baseline and neutrino energy More powerful beam Higher statistics


40 kton Liquid Argon detector located ~1 mile underground

"It" detector – Liquid Argon Time Projection Chamber

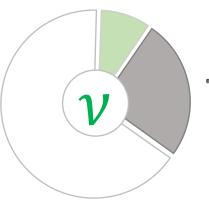
- Charged particles lose energy through Ar collision (scintillation light) and ionization (drift electrons)
- Fast scintillation light signal triggers the recording of events.
- Ionization electrons drift towards anode wire planes under E field.
- Capability of full 3D reconstruction in 4π .
- Amount of charge collected indicates the amount of energy loss from ionization.

Future long-baseline program

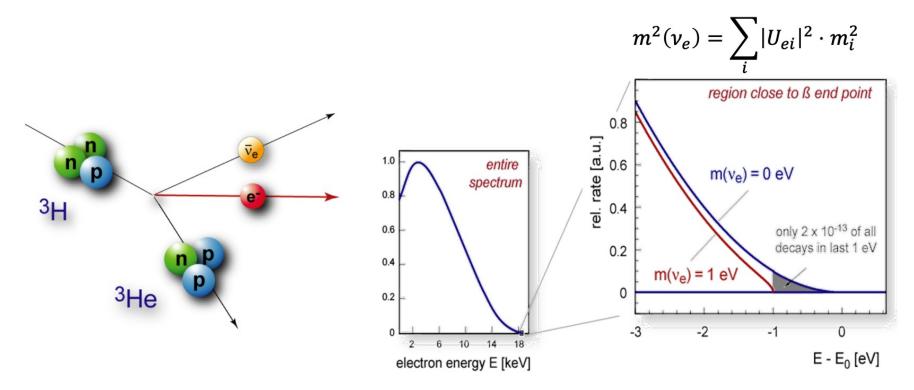

17 cm

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017

anti-neutrino mode


DUNE prospects

EJPC 80 (2020) 978


In parallel, another large scale long-baseline exp. HyperK @ Japan. Different detector technology and beamline offer complementarity.

Combined result from both experiments offer stronger constraint oscillation parameters.

The Known Unknowns – Absolute Neutrino mass

Direct neutrino mass measurement through high energy resolution of the tritium beta decay spectrum

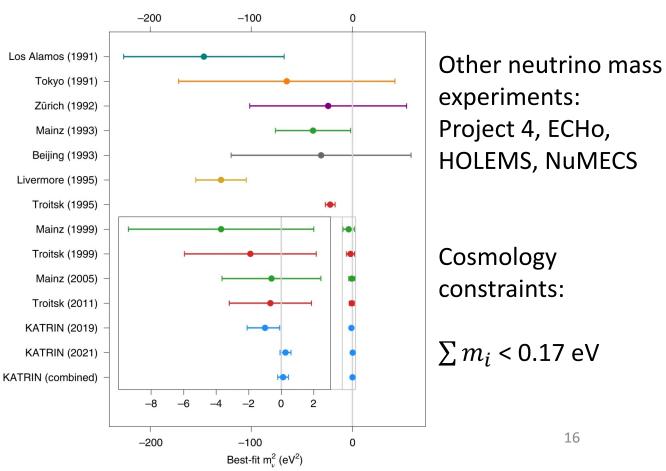
A sensitive neutrino mass experiment needs:

- Strong tritium source for signal statistics
- Low background
- Excellent energy resolution (sub-eV)
- Precise understanding of the beta decay spectrum (modeling)

From Susanne Mertens Neutrino 2020 talk

Direct neutrino mass experiments

KATRIN Experiment


Beta-decay electrons are:

- produced from gaseous tritium source (10¹¹ decays/s)
- transported with strong magnetic field (4T)
- energy measured by spectrometer with ~1eV resolution
- \succ rate counted by the Focal Plane detector

m_{ν} Sensitivity designed goal: 0.2 eV.

Latest Result (from <u>Nature</u>):

 m_{ν} sensitivity = 0.7 eV at 90% CL Upper limit: m_{ν} < 0.9 eV c⁻²

The Known Unknowns – Origin of Neutrino Mass

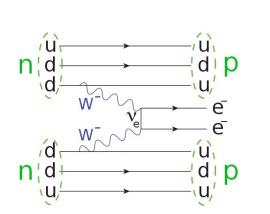
HANDED

 $m_{\nu} \sim m_{D} + m_{M}$

Dirac Mass

V

Majorana Mass


Mixing between light

 v_L & heavy v_R .

Same mechanism as other SM fermions

Requires very small coupling constants to make the neutrino light. Feel unnatural? Neutrino is its own anti-particle.

Break the SM global symmetry. Lepton number violation

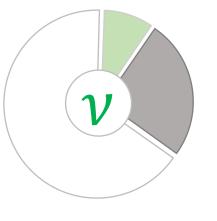
Seesaw Mechanism

Neutrinoless double beta decay $(0\nu\beta\beta)$, if occur, directly proves lepton number violation and indicate neutrino's Majorana nature.

Decay width:

 $\langle m_{etaeta}
angle^2$

$0\nu\beta\beta$ Experiments


CANDLES-III CANDLES-IV GERDA MAJORANA DEMONSTRATOR LEGEND 200 LEGEND 1000 SuperNEMO Demonstrator	48Ca 48Ca 76Ge 76Ge 76Ge 76Ge 82Se	305 kg CaF2 crystals in liquid scintillator CaF2 scintillating bolometers Point contact Ge in active LAr Point contact Ge in Lead Point contact Ge in active LAr Point contact Ge in active LAr	0.3 kg TBD 44 kg 30 kg 200 kg	Operating R&D Complete Operating	Divers field.
GERDA MAJORANA DEMONSTRATOR LEGEND 200 LEGEND 1000	76Ge 76Ge 76Ge 76Ge	Point contact Ge in active LAr Point contact Ge in Lead Point contact Ge in active LAr	44 kg 30 kg	Complete Operating	field.
MAJORANA DEMONSTRATOR LEGEND 200 LEGEND 1000	⁷⁶ Ge <mark>⁷⁶Ge</mark> ⁷⁶ Ge	Point contact Ge in Lead Point contact Ge in active LAr	30 kg	Operating	field.
LEGEND 200 LEGEND 1000	⁷⁶ Ge ⁷⁶ Ge	Point contact Ge in active LAr			
LEGEND 1000	⁷⁶ Ge		200 kg		
		Point contact Ge in active LAr	0	Construction	Diffe
SuperNEMO Demonstrator	⁸² Se		1 tonne	R&D	
		Foils with tracking	7 kg	Construction	Diffe
SELENA	⁸² Se	Se CCDs	<1 kg	R&D	
NvDEx	⁸² Se	SeF ₆ high pressure gas TPC	50 kg	R&D	tech
ZICOS	⁹⁶ Zr	10% natZr in liquid scintillator	45 kg	R&D	してい
AMoRE-I	100 Mo	⁴⁰ CaMoO ₄ scintillating bolometers	6 kg	Construction	Diffe
AMoRE-II	100 Mo	Li2MoO4 scintillating bolometers	100 kg	Construction	
CUPID	100Mo	Li ₂ MoO ₄ scintillating bolometers	250 kg	R&D	
COBRA	¹¹⁶ Cd/ ¹³⁰ Te	CdZnTe detectors	10 kg	Operating	Diffe
CUORE	¹³⁰ Te	TeO ₂ Bolometer	206 kg	Operating	
SNO+	¹³⁰ Te	0.5% natTe in liquid scintillator	1300 kg	Construction	
SNO+ Phase II	¹³⁰ Te	2.5% natTe in liquid scintillator	8 tonnes	R&D	_
Theia-Te	¹³⁰ Te	5% natTe in liquid scintillator	31 tonnes	R&D	
KamLAND-Zen 400	¹³⁶ Xe	2.7% in liquid scintillator	370 kg	Complete	
KamLAND-Zen 800	¹³⁶ Xe	2.7% in liquid scintillator	750 kg	Operating	Currer
KamLAND2-Zen	¹³⁶ Xe	2.7% in liquid scintillator	~tonne	R&D	Currer
EXO-200	¹³⁶ Xe	Xe liquid TPC	160 kg	Complete	Lifatio
nEXO	¹³⁶ Xe	Xe liquid TPC	5 tonnes	R&D	Lifetin
NEXT-WHITE	¹³⁶ Xe	High pressure GXe TPC	~5 kg	Operating	
NEXT-100	¹³⁶ Xe	High pressure GXe TPC	100 kg	Construction	1
PandaX	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D	
AXEL	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D	
DARWIN	¹³⁶ Xe	natXe liquid TPC	3.5 tonnes	R&D	-
LZ	¹³⁶ Xe	^{nat} Xe liquid TPC		R&D	-
Theia-Xe	¹³⁶ Xe	3% in liquid scintillator	50 tonnes	R&D	

Diverse, rich and mature field.

- Different isotopes
- Different detection • technologies
- Different sizes
- Different stages.

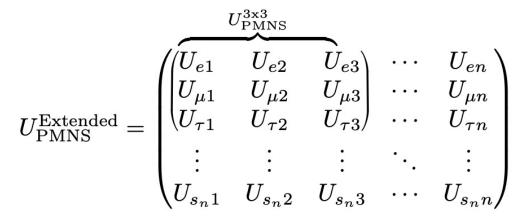
Current limits: Lifetime 10²⁵ to 10²⁶ year

18

The Known Unknowns – Sterile neutrinos

Q: Are there more than 3 type of neutrinos?

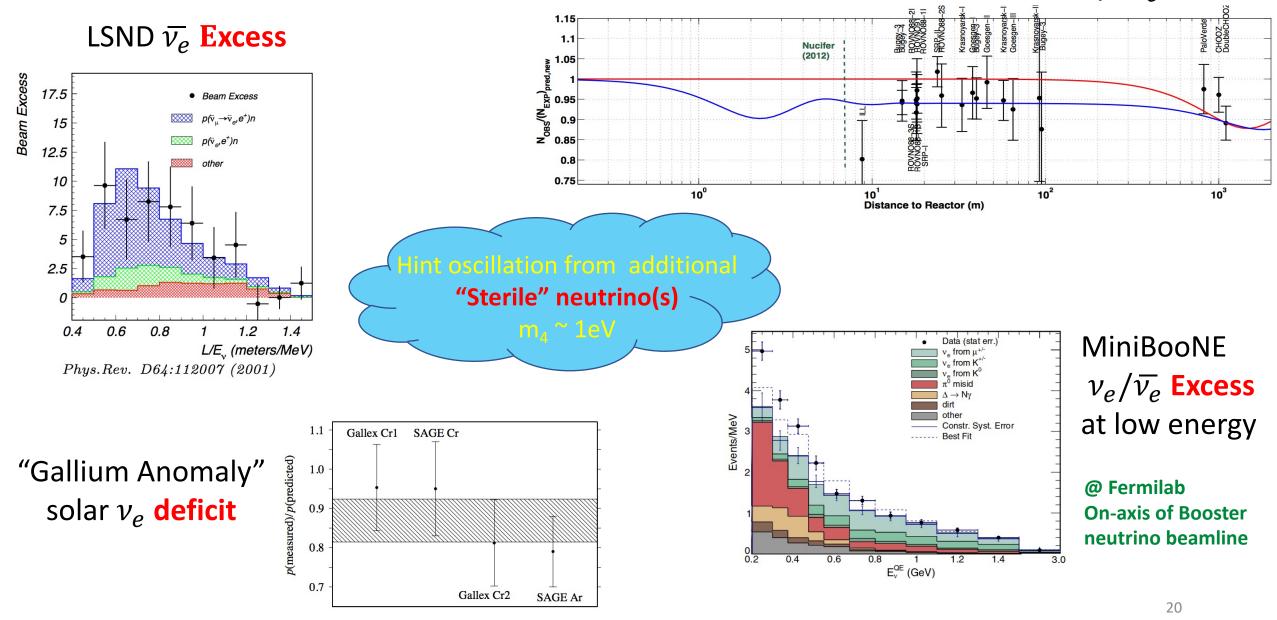
A: It's certainty possible, but with conditions. The new hidden neutrinos do not participate in the weak interactions, hence "sterile".


Q: how can we look for sterile neutrinos if they don't interact? A: we expect sterile neutrino to mix with the active neutrinos just like mixing in the $3-\nu$ paradigm. These additional mixings

will manifest in neutrino oscillation.

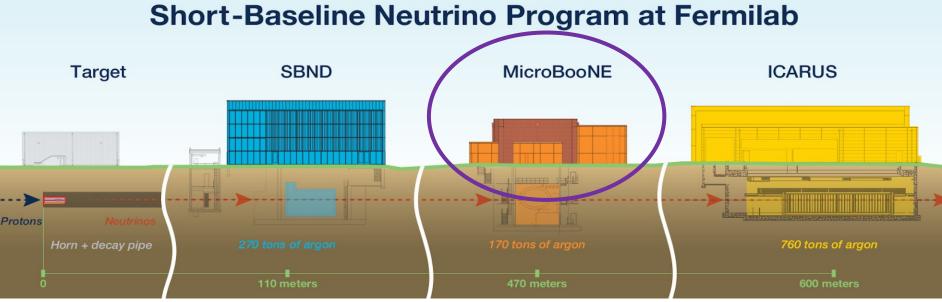
Q: What's their mass?

A: Without knowing the symmetry that dictate the scale, sterile ν 's weight can be anything.

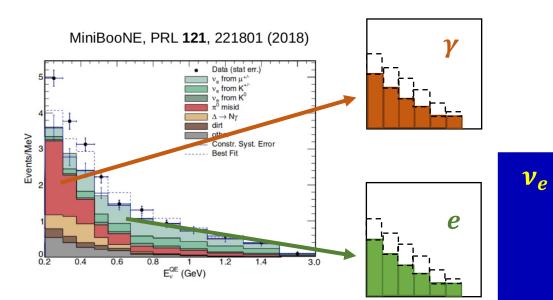

But we are not completely in the dark!

Experiments could guide the hunt, at least help pick the starting point.

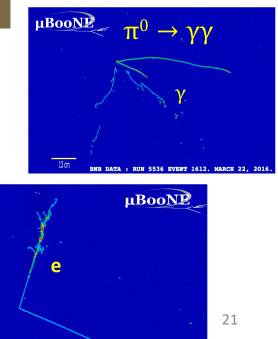
"Short baseline neutrino anomalies"


Short baseline neutrino anomalies

"Reactor Anomaly" $\overline{\nu_e}$ deficit


Phys.Rev. D64:112007 (2001)

Resolving short baseline neutrino anomalies

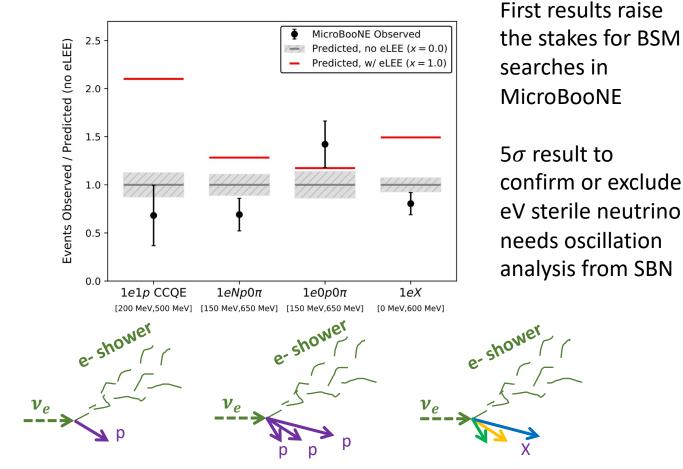

MicroBooNE is the first and the longest operating LArTPC experiment in the US, and has collected 1.5e21 POT neutrino data.

Primary goal is to address the MiniBooNE "Low-Energy-Excess" anomaly with LArTPC's capability of distinguishing electrons from photons.

SBN: Three LArTPCs on Fermilab's Booster Neutrino beamline.

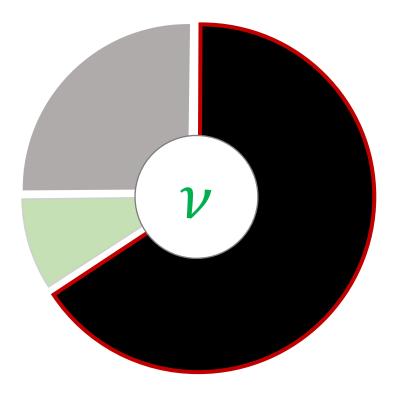
Goal: direct test of ~1eV sterile neutrino hinted from the previous short baseline neutrino anomalies.

BNB DATA : RUN 5360 EVENT 45. MARCH 8, 2016


13 cm

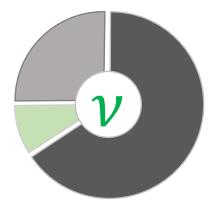
MicroBooNE "Low-Energy-Excess" first results

Photon search in $\Delta \rightarrow N\gamma$ channel


Electron searches

No data excess observed in the specific single photon channel NC $\Delta \rightarrow N\gamma$ (PRL 128, 111801) The photon hypothesis for MiniBooNE excess is not ruled out in MicroBooNE

Observe v_e rate in agreement or below prediction Reject the v_e are fully responsible for the MiniBooNE excess at >97% C.L. in all analyses (2110.14054)


Unknown Unknowns

Broad range of questions:

New particles?

New symmetries?

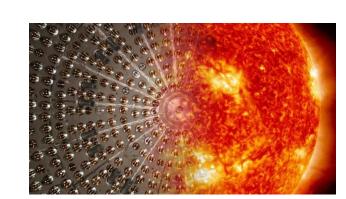
Connection to dark sector?

The Unknown Unknowns

Accelerator ν

PTOLEMY

Relic neutrino


Neutrino mass

Majorana or Dirac?

Dark matter

...meV

PROLEMY

eV

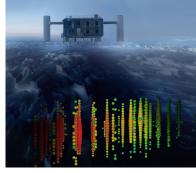
Solar ν

Solar model Sterile neutrinos Neutrino oscillation

keV

Heavy Neutral Leptons
Long lived Particle
ν portal to dark sector
Axion Like Particle
Millicharged particles
Lorentz invariance
CPT symmetry
eV sterile neutrino

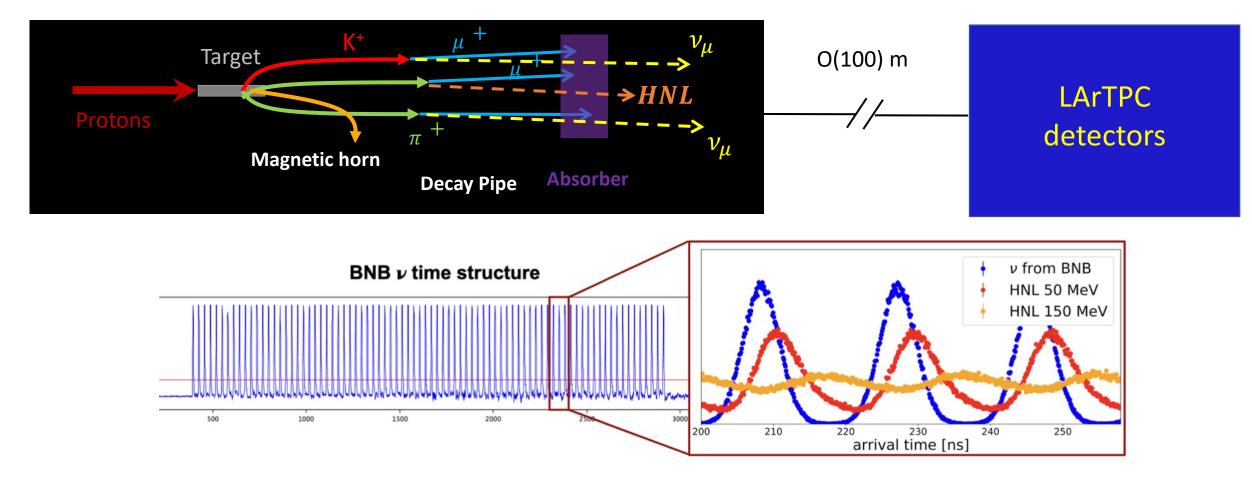
GeV


Collider

Heavy Neutral Leptons Long lived Particle Dark Matter Millicharged particles SUSY

TeV

ICEBUBE


Sterile neutrinos Mass ordering Dark Matter Astrophysics, e.g. Supernovae Neutrino NSI CPT symmetry

Energy Scale of experiments are probing

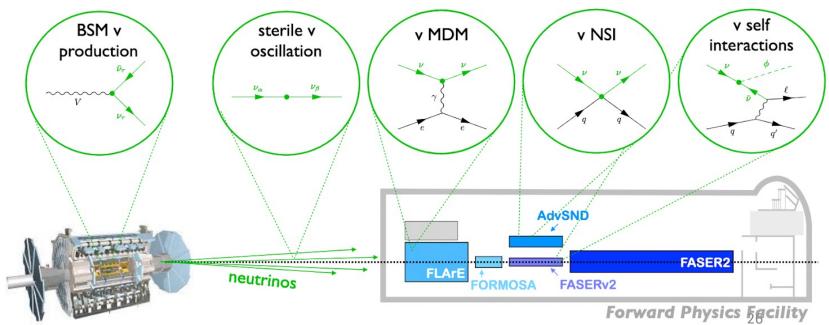
MeV

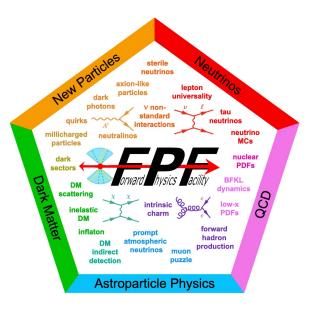
PeV ...

New physics searches with accelerator $\nu's$ @ MeV-GeV

The massive long-lived particles produced at the same time as neutrinos will arrive at the detector later. If we can measure the time-of-flight with ~1 ns resolution, we can use timing to distinguish new particles from neutrino background. We can already demonstrate <2 ns timing resolution in MicroBooNE! 25

New physics searches with collider $\nu's$ @ GeV-TeV


Forward Physics Facility @ LHC


Snowmass White Paper: <u>arXiv:2203.05090</u>.

High energy neutrinos [100s GeV - TeV] from p-p collisions in ATLAS detector.

Rich physics complementary to Fermilab accelerator program:Neutrino interactions, tau neutrinosBSM searches with neutrinos

Neutrino detectors: •FASERv [emulsion detector] •FLArE [LArTPC]

ν Experiments

Long baseline neutrino oscillation (e.g. DUNE) Long baseline neutrino oscillation (e.g. DUNE) Tritium beta decay experiments (e.g. KATRIN) $0\nu\beta\beta$ experiments Short baseline neutrino oscillation (e.g. SBN)

Parameter space sweep from all experiments

Neutrino experiments are connected to each other through big questions! Diverse experimental program is the key to open the door to the unknown world

CP violation?

Normal or inverted Mass Ordering?

Absolute Neutrino Mass?

Neutrino mass origin? Dirac or Majorana

More than 3 flavor? Sterile neutrinos

New particles, new symmetries, dark sector?

Outlook

What we know about neutrinos is a blurry picture. Just the tip of the iceberg

Because we know so little, studying them, in my view, is the best bet to find new physics

The path forward is to keep asking the big questions and keep digging in the experimental playground. Together, we will turn the unknowns to knowns!