

Physics at the Forward Physics Facility.

Felix Kling Pheno 2022 05/11/2022

Main focus of LHC are heavy particles: Higgs, SUSY

Their decay products have high pT and are distributed almost isotropically.

ATLAS/CMS were constructed to catch them.

The LHC produces a huge number of hadrons in the forward direction: $10^{17} \pi 0$, $10^{16} \eta$, $10^{15} D$, $10^{13} B$ within 1 mrad of beam.

Typically low pT but large energy.

Can we do something with that?

The LHC produces an intense and strongly collimated beam of neutrinos with TeV energies in the forward direction.

The LHC produces an intense and strongly collimated beam of neutrinos with TeV energies in the forward direction.

This may also be true for many interesting new particle candidates: dark photons, axion-like particles, dark matter.

These particles escape down the beam pipe and remain undetected.

Indeed, the existing big LHC detectors are perfectly designed NOT to see them.

LHC tunnel will eventually curve away, but the beam of neutral particles will continue along the beam collision axis.

LHC tunnel will eventually curve away, but the beam of neutral particles will continue along the beam collision axis.

Idea: Placed experiment in this beam to detect them.

Experimental Program: FASER — FASERv — SND@LHC — FPF

Searches for BSM physics: LLP Decays — DM Scattering — Millicharged Particles

> SM Measurements: Neutrinos — QCD — Cosmic Rays

Location.

Location.

Two new experiments will exploit this potential during run 3 of the LHC: SND@LHC and FASER.

FASER.

Main Goal: Search for light long-lived particles

Background considerations:

- large flux of muons from the LHC cause muon-associated radiative events

- use scintillators veto to reduce BG to negligible levels

FASER.

FASERv.

FASERv neutrino detector in front of FASER

- 25cm x 25cm x 1.3m, 1.2 ton mass
- placed on axis: $\eta > 9$
- ~10000 neutrinos during LHC Run 3

FASERv.

FASERv neutrino detector in front of FASER

- 25cm x 25cm x 1.3m, 1.2 ton mass
- placed on axis: $\eta > 9$
- ~10000 neutrinos during LHC Run 3

Emulsion detectors technology

- used by CHORUS, DONUT, OPERA
- 1000 emulsion films interleaved with 1mm tungsten plates
- global reconstruction with the FASER detector possible

SND@LHC: second LHC neutrino experiment

- located on other side of ATLAS
- used emulsion and electronic components
- slightly off-axis location: 7.2 < η < 8.7
- target: 830 kg of tungsten

Forward Physics Facility.

FASER and SND@LHC are highly constrained by 1980's infrastructure that was never intended to support experiments

The proposal: create a dedicated Forward Physics Facility (FPF) for the HL-LHC.

Forward Physics Facility.

The FPF would house a suite of experiments that will greatly enhance the LHC's physics potential for BSM physics searches, neutrino physics and QCD.

Forward Physics Facility.

FPF workshop series: FPF1, FPF2, FPF3, FPF4

FPF Paper: 2109.10905

~75 pages, ~80 authors

Snowmass Whitepaper:

<u>2203.05090</u> ~450 pages, ~250 authors

Experimental Program: FASER — FASERv — SND@LHC — FPF

Searches for BSM physics: LLP Decays — DM Scattering — Millicharged Particles

> SM Measurements: Neutrinos — QCD — Cosmic Rays

Motivation: Dark Sectors.

Motivation: Dark Sectors.

Motivation: Dark Sectors.

Long-Lived Particles: Dark Higgs.

Long-Lived Particles: Dark Higgs.

Long-Lived Particles.

Dark Matter Scattering.

MilliCharged Particles.

If mA'=0: X is effectively milli-charged with Q=εe

MilliCharged Particles.

If mA'=0: X is effectively milli-charged with Q=εe

MilliCharged Particles.

If mA'=0: X is effectively milli-charged with Q=εe

Searches for BSM Physics

dark sector searches

BSM neutrino physics

Experimental Program: FASER — FASERv — SND@LHC — FPF

Searches for BSM physics: LLP Decays — DM Scattering — Millicharged Particles

SM Measurements: Neutrinos — QCD — Cosmic Rays

There is a huge flux of neutrinos in the forward direction, mainly from π , K and D meson decays. [De Rujula et al. (1984)]

105

In 2018, the FASER collaboration placed ~30 kg pilot emulsion detectors in TI18 for a few weeks. First neutrino interaction candidates were reported. [FASER, 2105.06197]

A. De Rújula and R. Rickl CERN, Geneva, Switzerland

FASER Pilot Detector

lunchbox-size, 4 weeks \$0 (recycled parts) 6 neutrino interaction candidates

LHC provides a strongly collimated beam of TeV energy neutrinos of all three flavours in the far forward direction.

LHC provides a strongly collimated beam of TeV energy neutrinos of all three flavours in the far forward direction.

FASERv and SND@LHC will detect O(10k) neutrinos.

LHC provides a strongly collimated beam of TeV energy neutrinos of all three flavours in the far forward direction.

FASERv and SND@LHC will detect O(10k) neutrinos.

Proposed FPF experiment have potential to detect O(1M) neutrinos.

LHC provides a strongly collimated beam of TeV energy neutrinos of all three flavours in the far forward direction.

FASERv and SND@LHC will detect O(10k) neutrinos.

Proposed FPF experiment have potential to detect O(1M) neutrinos.

Events [1/bin]

E_r [GeV]

Where do the LHC neutrinos come from?

LHC neutrinos = probe of forward particle production

Forward Particle Production

TeV Energy Neutrino Interaction

23

Astroparticle Physics.

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Summary.

FASER and SND@LHC will soon start to take data in LHC's forward direction. New Particles sterile neutrinos The FPF is proposed to continue this axion-like particles program during the HL LHC era. photons v nonstandard interactions millicharged particles quirks dark sectors Dark Matter inelastic Significant extension of the DM LHC's physics program. DM intrinsic scattering charm We invite the Pheno community inflaton prompt to participate in this program. DM atmospheric indirect You are welcome to join! neutrinos detection

Neutrinos

tau

neutrinos

neutrino

MCs

nuclear

PDFs

QCD

BFKL

dynamics

low-x

PDFs

forward

hadron

production

muon

puzzle

Astroparticle Physics

lepton

universality

Neutrino Fluxes and Rates.

Event rates at LHC neutrino experiments estimated with two LO MC generators: SIBYLL / DPMJET

	Detector			Number of CC Interactions		
	Name	Mass	Coverage	$ u_e + \bar{\nu}_e $	$ u_\mu \!+\! ar u_\mu$	$ u_{ au} + ar{ u}_{ au}$
LHC Run3 {	$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	1.3k / 4.6k	6.1k / 9.1k	21 / 131
	SND@LHC	800kg	$7 < \eta < 8.5$	180 / 500	$1{\rm k}$ / $1.3{\rm k}$	10 / 22
HL-LHC	$FASER\nu 2$	20 tons	$\eta\gtrsim 8$	178k / 668k	943k / 1.4M	2.3k / 20k
	FLArE	10 tons	$\eta\gtrsim7.5$	36k / 113k	203k / 268k	$1.5 {\rm k}$ / $4 {\rm k}$
	AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	6.5k / 20k	$41\mathrm{k}$ / $53\mathrm{k}$	190 / 754
	7					

Large spread in current generator predictions

Challenge: For neutrino physics measurement we need to quantify and reduce neutrino flux uncertainties

Opportunity:

Forward neutrino flux measurement can help to improve our understanding of underlying physics.

Forward particle production is poorly constrained by other LHC experiments. LHC neutrinos fluxes measurement will provide novel complimentary information.

