

NA61/SHINE long-term plans

 $\label{eq:Szymon Pulawski} Szymon \ \mbox{Pulawski} for the NA61/SHINE \ \mbox{Collaboration}$

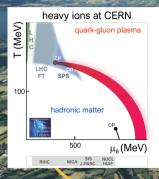
Detailed information is given in the NA61/SHINE status report 2020

Szymon Pulawski (University of Silesia)

NA61/SHINE long-term plans

CERN, October 26, 2021

NA6I/SHINE - UNIQUE MULTIPURPOSE FACILITY: Hadron production in hadron-nucleus and nucleus-nucleus collisions at high energies


CERN Prévessin

BEAMLINE

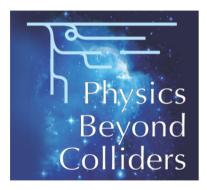
FRN-Meyrin

ACCELERATORS

and the second sec

NA61/SHINE 2021-2024 (2025?)

Beam request submitted to SPSC


- STRONG INTERACTIONS: measurements of charm hadron production in Pb+Pb collisions
- COSMIC-RAYS: measurements of nuclear fragmentation cross section
- NEUTRINO: measurements of hadron production induced by hadron beams

CERN-SPSC-2021-027

NA61++ 2027+

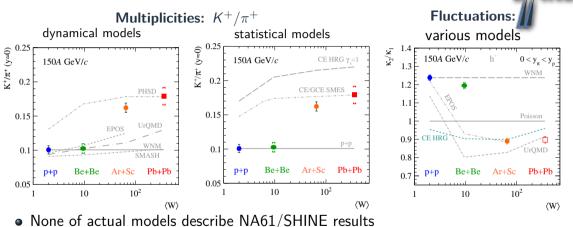
- Energy scan with light and medium mass ions to study the onset of fireball
- Measurements of heavy hadrons resonances in large statistics p+p interactions
- Measurements of hadron emission from the LBNF and HYPER-K replica targets
- Data for flux predictions in neutrino experiments using very low energy beams

CERN-SPSC-2020-023

Energy scan with light and medium mass ions to study the onset of (QGP) fireball

Current NA61/SHINE results

Mean multiplicities: **Fluctuations:** χ^{+}/π^{+} (y=0) ¢∕K K⁺/π⁺ (y=0) NA61/SHINE 150A GeV/c p+p Pb+Pb 150A GeV/c 0.2 Be+Be 0.2 1.1 0.15 0.1 0.1 0.5 0.9 0.1 0.04 0.8 10^{2} 10 10 (GeV) Gall (W) (W)


$p+p \approx Be+Be \neq Ar+Sc \leqslant Pb+Pb$

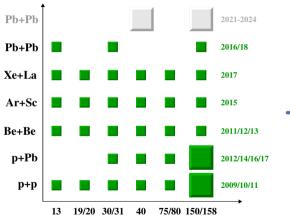
• Beginning of creation of strongly interacting matter with increasing nuclear mass number. Transition from **non-equilibrium** strings and resonances to **equilibrium** hadron gas or quark gluon plasma.

Szymon Pulawski (University of Silesia)

NA61/SHINE long-term plans

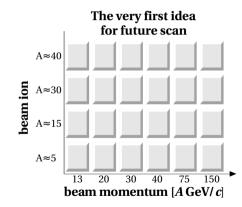
Data vs models

PHSD: Eur.Phys.J.A 56 (2020) 9, 223, arXiv:1908.00451 and private communication; SMASH: J.Phys.G 47 (2020) 6, 065101 and private communication; UrQMD and HRG: Phys. Rev. C99 (2019) 3, 034909 SMES: Acta Phys. Polon. B46 (2015) 10, 1991 - recalculated

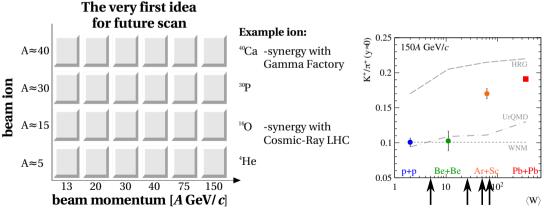

Szymon Pulawski (University of Silesia)

NA61/SHINE long-term plans

 $\begin{array}{l} p+p: \mbox{ Eur. Phys. J. C77 (2017) 10, 671} \\ Be+Be: Eur. Phys. J. C81 (2021) 1, 73 \\ Ar+Sc: NA61/SHINE preliminary \\ Pb+Pb: Phys. Rev. C66, 054902 (2002) \\ \kappa_2/\kappa_1: NA61/SHINE preliminary \end{array}$

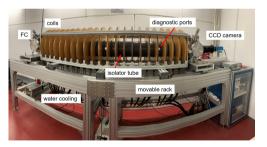

Onset of fireball

Current 2D scan


beam momentum [A GeV/c]

Onset of fireball

• Ion beam request for the Run 4 period

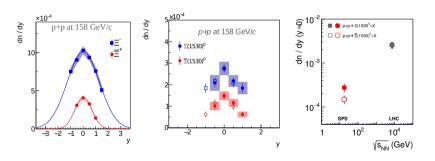


S.IN

Improvement of the beam-line

Large emittance of the low-momentum (below 40A GeV/c) ion beams is always a factor reducing the data-taking efficiency

- Ongoing efforts for improvement of the low energy ion beam emittance in SPS and in H2 beam-line in collaboration with BE-OP and BE-EA
- Ongoing efforts in investigating new innovative focusing techniques based on electrostatic lenses ("Gabor-lenses")
- First tests are planned before LS3



Measurements of heavy hadrons and resonances in large statistics p+p interactions

Multi-strange particles in NA61/SHINE s

• Large statistics of p+p interactions at 158 GeV/c gathered in 2009-2011 allowed to obtain unique results on the production of multi-strange hadrons

• Study of heavy baryons and resonances requires a large-statistics data sample

Szymon Pulawski (University of Silesia)

- The only results on $\Xi^0(1530)$ production in p + pin the SPS energy range
- Other existing results on $\Xi^{0}(1530)$ production only by ALICE at $\sqrt{s_{NN}} = 7$ TeV

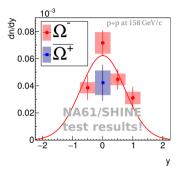
Heavy particles-there is more

Baryon <mark>reso</mark> nance particles														
A particles			Σ particles			Ξ and Ω particles			Charmed particles			Bottom particles		
٨	$1/_{2}^{*}$	****	Σ*	$1/_{2}^{+}$	****	≡°	$\frac{1}{2}^{*}$	****	∧_*	V_2^*	****	∧ <mark>0</mark>	V_2^*	•••
A(1405)	$1/_{2}^{-}$	****	Σ0	$1/_{2}^{+}$	****	ET.	$1/_{2}^{+}$	****	∧₀(2595)*	V_{2}^{-}	***	∧ _b (5912) ⁰	V_{2}^{-}	•••
A(1520)	3/2-	••••	Σ-	$1/_{2}^{+}$	****	Ξ(1530)	3/2+	••••	∧₀(2625)*	3/2-	***	∧ _b (5920) ⁰	3/2-	•••
A(1600)	1/2*	•••	Σ(1385)	3/2+	****	Ξ(1620)		•	∧₀(2765)*		•	Σ _b	$1/_{2}^{*}$	•••
A(1670)	$1/_{2}^{-}$	****	Σ(1480)		*	Ξ(1690)		***	∧₀(2880)*	5/2+	***	Σ _b	3/2*	***
∧(1690)	3/2-	••••	Σ(1560)		**	Ξ(1820)	3/2-	•••	∧₀(2940)*	3/2-	•••	Ξ ⁰ _b , Ξ ⁻ _b	1/2*	•••
A(1710)	$1/_{2}^{+}$	*	Σ(1580)	3/2-	*	Ξ(1950)		***				Ξ' _b (5935) ⁻	$1/_{2}^{+}$	***
∧(1800)	1/2-	•••	Σ(1620)	1/2-	•	Ξ(2030)	≥ 5/2?	***	Σ _c (2455)	$1/_{2}^{+}$	****	Ξ _b (5945) ⁰	3/2+	•••
/(1810)	1/2*	•••	Σ(1660)	1/2+	***	Ξ(2120)		•	Σ _c (2520)	3/2+	***	Ξ _b (5955) ⁻	3/2*	•••
A(1820)	5/2+	****	Σ(1670)	3/2-	****	Ξ(2250)		**	Σ _c (2800)		***	Ω_b	1/2*	***
A(1830)	5/2-	****	Σ(1690)		**	Ξ(2370)		**				P _c (4380)*		٠
∧(1890)	3/2*	****	Σ(1730)	3/2+	*	Ξ(2500)		•	Ξ.	$1/_{2}^{+}$	***	P _c (4450)*		•
∧(2000)			Σ(1750)	1/2-	***				≡ <u>°</u>	1/2+	***			
∧(2020)	7/2*	*	Σ(1770)	1/2+	*	Ω-	3/2+	****	Ξ	1/2+	***			
∧(2050)	3/2-	*	Σ(1775)	5/2-	****	Ω(2250) ⁻		***	Ξ.0	1/2+	***			
∧(2100)	7/2-	****	Σ(1840)	3/2+	•	Ω(2380)-		**	Ξ_(2645)	3/2+	***			
A(2110)	5/2*	***	Σ(1880)	1/2+	**	Ω(2470)-		**	Ξ_(2790)	1/2-	***			

- Many poorly known meson and baryon states.
- SPS energies well suited for their measurements

 $895.50 \pm 0.92 \pm 2.6$

 $48.8 \pm 1.8 \pm 2.0$


 $I(J^P) = \frac{1}{2}(1^-)$

⁹ ADUSZKIEW...20A NA61 158 pp ⁸ ADUSZKIEW...20A NA61 158 pp

Large-statistics data sample needed

Assuming

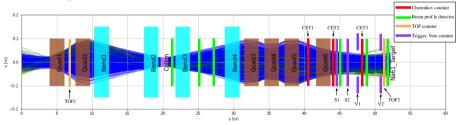
- average SPS super cycle: 40 s flat top: 4.8 s
- typical data taking efficiencies summarized in NA61/SHINE Addendum 2018, Sec 9.3
- 1 kHz read-out rate
- We could achieve 600M p+p interactions over a month of the data taking
- Study of Ω already suffers form having only $\sim 60M$ events

Measurements for flux predictions in neutrino experiments

Measurements of hadron production for neutrino and cosmic-ray physics

- NA61/SHINE will continue to support needs of neutrino and cosmic ray communities after LS3 in the scope of:
 - hadron yields measurements with use of LBNF and Hyper-Kamiokande replica targets
 - hadron production using low-energy hadron beams (1-20 GeV/c), where existing hadron production data is sparse, but high statistics of high-quality data is needed
- Addendum to NA61/SHINE proposal submitted to SPSC CERN-SPSC-2021-028

Needs for measurements employing low-E beams



- Accelerator-based neutrino experiments: to reduce the leading uncertainty on neutrino flux prediction (that is hadron production)
 Requirement: [T2K/Hyper-K] low-E secondary hadron interactions measurements (1-10 GeV/c pions, kaons, protons); [SBN] p+Be at 8 GeV/c
- Atmospheric neutrino experiments: to understand low-E hadron production for sub-GeV neutrino flux (0.1-1 GeV neutrinos)
 Requirement: low-E proton beam (1-20 GeV/c) on nitrogen or carbon target
- Spallation neutron source neutrino experiments: to understand pion production rate from mercury target
 Requirement: [JSNS2 at J-PARC] 3 GeV/c proton on a mercury target; [SNS at ORNL] 1 GeV/c proton on a mercury target

Very Low Energy beam-branch idea

NA61/SHINE with the strong support of BE-EA experts is advancing on studies for the implementation of a Very Low Energy (VLE) beam-line still before LS3:

- ▶ simulation of an intermediate (secondary) target for low-E beam production
- ▶ investigation of various options for particle identification in the beam-line
- investigation on beam-line designs aiming to maximize acceptance, minimize beam-line length and cost

CERN-SPSC-2021-028

main focus on completion of the upgrade and preparation to the approved physics programme

Milestones

- ▶ gathering the ideas for 2027+ physics programme
- initial studies within working groups
- ▶ discussion of the collaboration format (NA61/SHINE or a new collaboration)

• 2022:

• Now:

► open workshop on NA61/SHINE future

• 2023:

 \blacktriangleright formulation of a letter of intend for 2027+ physics programme

Thank you

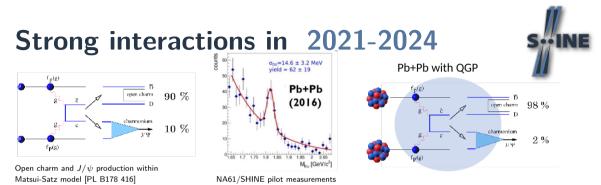
NA61/SHINE would like to thank the CERN EP, BE, HSE and EN Departments for support

Szymon Pulawski (University of Silesia)

NA61/SHINE long-term plans

Summary

• Status and plans for 2021-2024:

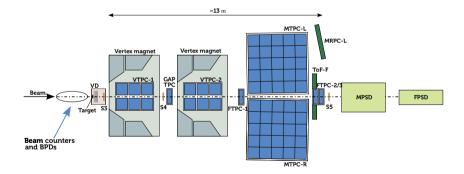

- The detector upgrade is ongoing.
- ▶ Readiness for physics data taking in spring 2022
- Beam request under discussion with SPSC

• Ideas for 2027+:

- ► Study of the onset of fireball energy scan with low and medium mass ions
- Measurements of heavy hadrons and resonances in large statistics p+p interactions
- ► Measurements with anti-proton beams
- ► Hadron emission study using replica targets from the LBNF and HYPER-K
- Measurements to improve quality of flux predictions in neutrino experiments using very low energy beams

Additional slides

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/Ψ production?


Medium reduces probability of J/Ψ production

$$P(c\overline{c} \rightarrow J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$$

 $P_{vacuum}(c\overline{c}
ightarrow J/\psi) > P_{medium}(c\overline{c}
ightarrow J/\psi)$

NA61/SHINE's status

• Work on the upgrade is ongoing. Full readiness of the NA61/SHINE detector foreseen for spring 2022..

• First physics data taking in 2022 - beam request submitted to SPSC.

Szymon Pulawski (University of Silesia)

NA61/SHINE long-term plans

