

SHIP

Marc Schumann U Freiburg

PBC General Working Group Meeting CERN, December 2-3, 2021

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

see also BDF report by Matthew Fraser

 $\begin{array}{c}
\lambda \\
\sqrt{\alpha} \\
\end{array}$ $\begin{array}{c}
A' \\
\end{array}$ $\begin{array}{c}
\gamma \\
\end{array}$

- Standard Model incomplete
- many BSM models predict "hidden sector" (HS) which is super-weakly coupled to the SM

$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{portal}} + \mathcal{L}_{\text{HS}}$	3

Portal	Interaction term
Scalar (e. g. dark scalar, dark Higgs)	$(H^\dagger H)\phi$
Vector (e. g. dark photon)	$arepsilon F_{\mu u}F_{\mu u}'$
Fermion (e. g. heavy neutral lepton (HNL))	$H^\dagger \dot{\overline{N}} L$
Axion-like particle (ALP)	$aF^{\mu u} ilde{F}^{\mu u}$

- SHiP is a general purpose beam-dump experiment to search for such hidden sector particles, e.g.,
 - ▶ dark photons, ► ALPs, ► dark scalars, ► light dark matter,
 - ► heavy neutral leptons (HNL, e.g., RHv), etc.

HS: Experimental Features

- production: meson decays (π , K, D, B), p-Bremsstrahlung, QCD
 - ▶ production BF ~ 10⁻¹⁰
- features: ➤ neutral
 - ► long-lived
 - ► travel (almost) unperturbed through matter
- final states

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

- signature: isolated decay vertex pointing back to target
- detector requirements:
 - ► full reconstruction and PID to distinguish between models
 - \blacktriangleright cover fully (without ν) and partially reconstructed (with ν) final states
 - rare signals require sophisticated background suppression
 - → aim for zero background

SHiP Backgrounds

- extensive MC-based background study
- MC validated against data

 e.g., simulation of μ-production: JINST 14 (2019) P11028
 μ-flux from replica target: EPJ C 80 (2020) 3, 284
 → more tests with muon shield prototype are planned

3 main background sources

- μ combinatorial background
- μ deep inelastic scattering
- v deep inelastic scattering

Background reduction/rejection

- detector design (µ shield, decay vessel)
- selection criteria
- timing (Δt<100 ps)
- background taggers (UBT, SBT)

SHiP Backgrounds

- extensive MC-based background study
- MC validated against data

 e.g., simulation of μ-production: JINST 14 (2019) P11028
 μ-flux from replica target: EPJ C 80 (2020) 3, 284
 → more tests with muon shield prototype are planned

3 main background sources

- μ combinatorial background
- μ deep inelastic scattering
- v deep inelastic scattering

Background reduction/rejection

- detector design (µ shield, decay vessel)
- selection criteria
- timing (Δt<100 ps)
- background taggers (UBT, SBT)

Expected [2×10²⁰ pot] 4.2×10⁻² <6×10⁻⁴

<0.1 (fully) | <0.3 (partially)

Background goal can be reached with high level of redundancy

SHiP Science: Examples

Physics Case is strong and unbeaten

EPPSU: BDF/SHiP is forerunner in dark-sector searches

<u>~6 m</u>,

Compehensive Design Study: CERN-SPSC-2019-049

arXiv:2112.01487

SHiP Design (CDS)

Compehensive Design Study: CERN-SPSC-2019-049

arXiv:2112.01487

- Design for zero background: SHiP is a discovery experiment
- In case of discovery: SHiP will measure particle properties

<u>~6</u> m

SHiP Design (CDS)

Compehensive Design Study: CERN-SPSC-2019-049

arXiv:2112.01487

Surround Background Tagger (SBT)

▶ id of μ/ν-induced inelast. i/a in SND and decay volume walls

LS vessels with WOM readout

W/Mo target for maximize c/b production reduction of v from $\pi/K \rightarrow \mu\nu$ Absorber magnetized to remove μ[±] right away

Scattering+Neutrino Detector (SND)

- ▶ light DM scattering, τ-neutrino physics
- ▶ vield normalization for HS search
- hybrid spectrometer in magnet (absorber, nucl. emulsions, fast tracker)

Decay Spectrometer (DS)

- ► HS particle decays to SM
- straw tracker in magnet
 - → track/vertex reconstruction
- scint. bars + SiPMs
 - → timing with ~100ps resolution to reduce combinatorial backgrnds
- ECAL (SplitCal)
- hadron absorber
- μ-detector (scint. tiles+SiPMs)

muon id system

μ-Shield: only μ , ν (+NP) escape target

- reduction O(10⁶) achieved in CDS

μ-shield to sweep away μ[±]

Magnet: JINST 15 (2020) 01, P01027

Detector technology application: SND@LHC

arXiv:2002.08722

- SND@LHC approved by CERN in April 2021
- Construction/commissioing onoing right now

- Goal: neutrino physics and light DM searches AND pathfinder detector for SHiP
- SND@LHC collaboration are mainly SHiP institutions
- Data taking expected to start in March 2022

Physics model	Final state
LDM	electron, proton, hadronic shower
$v_{\tau}, \ \overline{v}_{\tau}$ measurements	$ au^\pm$
v -induced charm production (v_e, v_μ, v_τ)	$D_s^\pm, D^\pm, D^0, \overline{D^0}, \Lambda_c^+, \overline{\Lambda_c}^-$

Scattering+Neutrino Detector (SND)

- ► replace emulsions by electronic trackers (e.g., Si)
- ightharpoonup relax severe constraints on μ -rate passing μ -shield
- ► allow shorter μ -shield \rightarrow more compact
- ► more sophisticated cuts possible
 - → keep zero-background goal

BDF/SHiP R&D

Activities for next 3 years:

Review of Detector Technologies Optimization of Detector Layout

- more compact → infrastructure cost reduction
 - → smaller footprint
 - → alternative locations? (see talk by M. Fraser/BDF team)

MoU on SPS BDF R&D program

between CERN and SHiP Collaboration+ (29 institutions propose contributions)

3 main projects (addenda)

- ► Muon Shield
- ► Vacuum Decay Volume
- ► BDF Performance Optimizaton

Design Study of µ-Shield

R&D to evaluate technologies through prototypes and beam tests, optimisation of design/engineering

WP1: sub-assembly prototype using baseline technology (grain oriented steel)

WP2: alternative technologies (e.g., SC)

WP3: test beam measurements WP4: prelim. design of μ-shield adapted to location of BDF

Vacuum Decay Volume

R&D addresses feasibility and optimisation of layout/engineering of vacuum vessel, and the associated SBT detector.

Surround Background Tagger (SBT)

► LS vessels with WOM readout

WP1: joint optimization/engineering of vacuum vessel + SBT

WP2: optimisation of LS-SBT + prototype

WP3: R&D for ultralight large-acpt tracker

WP4: construction of full-size vessel prototype with front-/endcaps and vacuum capabilities

Facility Performance Optimization

R&D addresses overall optimization of BDF experimental configuration and experimental conditions, and the **evaluation of its physics potential**

► take input from µ-shield and vacuum vessel/SBT studies

► evaluate performance expectations

► feedback on design, integration, civil engineering

WP1: sensitivity simulations

WP2: physics optimization of μ-shield + vacuum vessel

WP3: detailed background studies

WP4: signal yield studies + new theory ideas

→ ensure competitiveness of BDF

SHiP Summary

- SHiP science case remains unbeaten
- SHiP collaboration is very active

- R&D on BDF in the next 3 years
 - μ-shield
 - vacuum decay vessel + SBT
 - optimization of facility's performance
 - → MoU out for signatures

- ► SND: replace emulsions by electronic Si-trackers
- SND@LHC approved, data in 2022
- New groups are embarking on SHiP