Update on the high-intensity Kaon programme at the SPS

Karim Massri karim.massri@cern.ch

High-intensity Kaon programme @ SPS

C. Lazzeroni, PBC Annual Workshop, March 2021

Considered configurations:

• Charged beam $(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

- $\sim 7 \times 10^{18} \text{ POT/year } [4x \text{ wrt NA62}]$
- Neutral beam $\begin{cases} \text{with tracking } (K_L \to \pi^0 \ell^+ \ell^-) \\ \text{without tracking } (K_L \to \pi^0 vv) \end{cases} \sim 10^{19} \text{ POT/year } [6x \text{ wrt NA62}]$
- **Beam dump** (ALPs, HNLs, dark scalars, etc) $\sim 10^{19} \, \text{POT}$ by LS4, up to $5 \times 10^{19} \, \text{POT}$ by 2039 $\sim 10^{19} \, \text{POT/year}$ [6x wrt NA62]

Updates since March 2021

NA62 news:

- NA62 officially approved up to LS3
- NA62 2021 data taking completed
 - Reached 100% nominal intensity
 - $-\sim 1$ week of beam dump: $> 10^{17}$ POT collected

Beam dump data taking @ NA62:

- Crucial source of information for **post-LS3 dump** programme
 - Physics reach: backgrounds, muon rates
 - Operation: TAX stress test, first time at > 150% of NA62 nominal intensity

Post-LS3 programme - Main activities:

Detectors R&D:

- Test beam for KLEVER Small-angle calorimeter
- K⁺ phase:
 - New STRAW spectrometer pre-production tests
 - New Si detector project, possible upgrade of NA62 Gigatracker

Sensitivity studies:

• Feasibility study for a measurement of interference between $K_S \to \mu^+\mu^-$ and $K_L \to \mu^+\mu^-$

NA62-dump: 2021 data taking

From previous PBC mandate:

Beam-line tuning for improved beam-dump operation

Optimised sweeping:

~ 4x reduction of single μ rate IMPLEMENTED in 2021

Preliminary $\mu^+\mu^-$ -pair analysis:

O(200) background reduction, despite higher intensity!

NA62-dump: 2021 data taking

KLEVER: Small-angle calorimeter

Small-angle calorimeter system (SAC) operates inside neutral beam

- Rejects γ s from $K_{_{\rm L}} \to \pi^0 \pi^0$ escaping through beam hole
- As insensitive as possible to 430 MHz of beam neutrons

Baseline solution:

Ultra-fast, heavy Cerenkov calorimeter

- $\sigma_{t} < 100$ ps, 2-pulse separation at ~ 1 ns
- Possibly exploiting coherent interactions in crystals to reduce thickness

Specific implementation:

CRYLIN - R&D proposal for muon collider ECAL

- 10×10×40 mm³ crystal cells
- 4 SiPMs per crystal, read out in pairs

KLEVER: Test beam at SPS H2 (Aug 2021)

Test beam setup:

- PbF, with CRYLIN module 0
 - e⁻ 20-120 GeV (6 points)
 - γ tagged from 120 GeV e⁻
 - μ 150 GeV, parallel
- PWO III, standalone
 - γ tagged from 120 GeV e⁻

Light yield vs angular alignment

 \rightarrow Full study with tagged γ for each crystal

Joint participation in test beam by KLEVER, MUCOL & STORM

KLEVER: Test beam at SPS H2 (Aug 2021)

Joint participation in test beam by KLEVER, MUCOL & STORM

Preliminary results:
Stochastic term < 100 ps at 1 GeV
Full angular study with tagged γ ongoing

KLEVER: Plans for 2022

Test setup:

- Simpler setup compared to 2021: only electrons (+ MIPs), no tagged γs
- Faster electronics (10 ns fall time)
- Two 3×3 CRYLIN test modules
- Have all needed PbF₂ crystals
- Possibly load one 3×3 module (9 crystals, 10×10×40 mm³) with PWO-III instead of PbF₂

Test objectives:

- 1) Perform **complete operational test**, possibly including cooling
- 2) Test **cluster reconstruction** capability, especially for time resolution
- 3) Conceptual test of **longitudinal segmentation**
- 4) Possible to study **angular effects** by aligning beam with axis of central crystal

Beam time request (1 week, H2/H4 @ SPS) submitted

K⁺ phase: STRAW spectrometer upgrade

• Main differences wrt NA62 STRAW spectrometer:

- Smaller straw diameter: 5 mm (instead of 9.8 mm)
 - → Improved trailing time resolution:~ 6 ns (single straw), < 1 ns (track)
 - → Rate capability increased by factor 6-8, due to geometry and shorter drift time
- Reduced straw wall thickness:
 - 12 μm or 19 μm (instead of 36 μm)
 - → Total material budget: $1.1\%X_0$ or $1.5\%X_0$ (instead of $1.7\%X_0$)
 - → less multiple scattering

• Pre-production tests:

- Au/Cu coated Mylar film of 12 μm and 19 μm have been procured
- 5 m long straws with a 19 μm wall thickness have successfully been produced through ultrasonic welding

K⁺ phase: New Si detector project

• Current NA62 beam spectrometer – GTK:

- 4 stations of Si pixel detectors: planar pixel sensor 300×300×200 μm³
- Using TDCpix readout chip
- Time resolution per hit: $\sigma_{\rm t} \sim 130 \ {\rm ps}$

New project at TRIUMF:

Combine

NA62 test station (TDCpix Telescope) with ~70 ps time resolution

EUDET pixel telescope

with $< 5 \mu m$ spatial resolution

- Tests of advanced new Si pixel sensors
- Possible short-term impact:
 Identify a new sensor that would improve the
 GTK time resolution using the existing TDCpix ASIC
 → opportunity to test in NA62 before LS3

$K_S \rightarrow \mu^+ \mu^- / K_L \rightarrow \mu^+ \mu^-$ feasibility study

Measurement of interference between $K_S \to \mu^+\mu^-$ and $K_L \to \mu^+\mu^-$: feasibility study started, triggered by a recent publication by A. Dery et al. [JHEP07(2021)103]

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{\ell=0} = \mathcal{B}(K_L \to \mu^+ \mu^-) \times \frac{\tau_S}{\tau_L} \times \left(\frac{C_{int}}{C_L}\right)^2$$
SM computation:
$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{\ell=0} \approx 1.64 \cdot 10^{-13} \times \left|\frac{V_{ts} V_{td} \sin \theta_{ct}}{1.33 \cdot 10^{-4}}\right|^2$$

$$(NS \to \mu^{-}\mu^{-})\ell = 0 \approx 1.04 \cdot 10 \times \frac{1}{1.33 \cdot 10^{-4}}$$

Measurement of C_{int} = clean measurement of $|V_{ts}V_{td}\sin\theta_{ct}| = |V_{ts}V_{td}\sin(\beta + \beta_s)| \approx A^2\lambda^5\bar{\eta}$

• Considerations for the required kaon flux:

- K_L production from previous studies for KLEVER
- $BR(K_L \to \mu^+ \mu^-) \sim 7 \times 10^{-9}$
- Interference term $\sim 12\%$ of the K_L rate (theory estimate)
- Fraction of useful $K \to \mu^+ \mu^-$ decays (first 6 K_S lifetimes) ~ 1%

→ Requirements on POT similar to KLEVER

Preliminary considerations based on Toy MC:

- Present NA62 STRAW spectrometer satisfies momentum and angular resolution requirements
- Main challenges:
 - Design of the target area and the collimation system (synergy with KLEVER)
 - High particle rates at detectors

Conclusions

• Integrated high-intensity kaon programme at the SPS

- Common upgrades for intensity and detectors between projects
- Long term physics programme in NA-ECN3, from LS3 to ~ 2039
- Future high-intensity kaon programme strongly relies on K12 target/TAX upgrade

• NA62-dump 2021 data taking:

- >10¹⁷ POT collected in 2021 by NA62-dump
- Optimised sweeping leads to O(200) background reduction
 - → Excellent prospects for post-LS3 beam dump

Detectors R&D:

- Test beam for KLEVER small-angle calorimeter
 - → Promising preliminary results, further beam tests in 2022
- K⁺ phase:
 - New STRAW spectrometer: promising pre-production tests
 - New Si detector project, possible upgrade of NA62 GigaTracker

• Sensitivity studies:

- Feasibility study of $K_S \rightarrow \mu^+ \mu^- / K_L \rightarrow \mu^+ \mu^-$ interference started