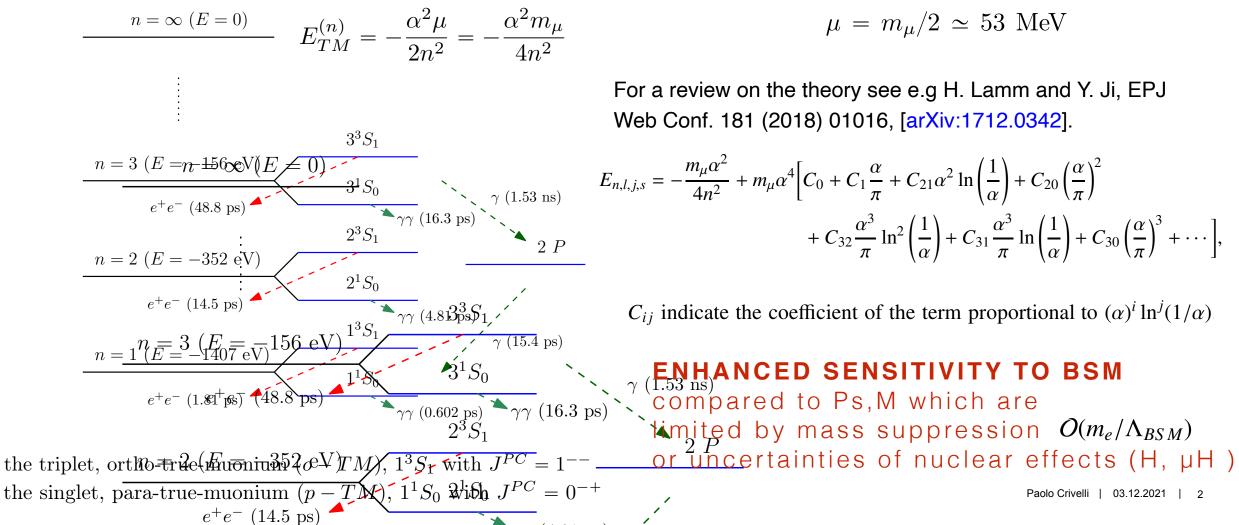


Progress on the true muonium front


PBC general meeting 03.12.2021

Paolo Crivelli, Institute for Particle Physics and Astrophysics, ETH Zurich

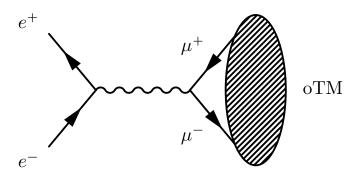
TRUE MUONIUM- properties

BOUND STATE OF $\mu^+\mu^-$ VERY COMPACT QED OBJECT

 $a_{TM}^0 = 2/(\alpha m_{\mu}) \simeq 512 \text{ fm}$ $\mu = m_{\mu}/2 \simeq 53 \text{ MeV}$

For a review on the theory see e.g H. Lamm and Y. Ji, EPJ Web Conf. 181 (2018) 01016, [arXiv:1712.0342].

$$E_{n,l,j,s} = -\frac{m_{\mu}\alpha^{2}}{4n^{2}} + m_{\mu}\alpha^{4} \Big[C_{0} + C_{1}\frac{\alpha}{\pi} + C_{21}\alpha^{2}\ln\left(\frac{1}{\alpha}\right) + C_{20}\left(\frac{\alpha}{\pi}\right)^{2} \\ + C_{32}\frac{\alpha^{3}}{\pi}\ln^{2}\left(\frac{1}{\alpha}\right) + C_{31}\frac{\alpha^{3}}{\pi}\ln\left(\frac{1}{\alpha}\right) + C_{30}\left(\frac{\alpha}{\pi}\right)^{3} + \cdots \Big],$$


 C_{ij} indicate the coefficient of the term proportional to $(\alpha)^i \ln^j (1/\alpha)$

NCED SENSITIVITY TO BSM $\gamma (1.53 \text{ ns})$ compared to Ps,M which are kingited by mass suppression $O(m_e/\Lambda_{BSM})$

1) PRODUCTION OF TM via annihilation channel at SPS-H4

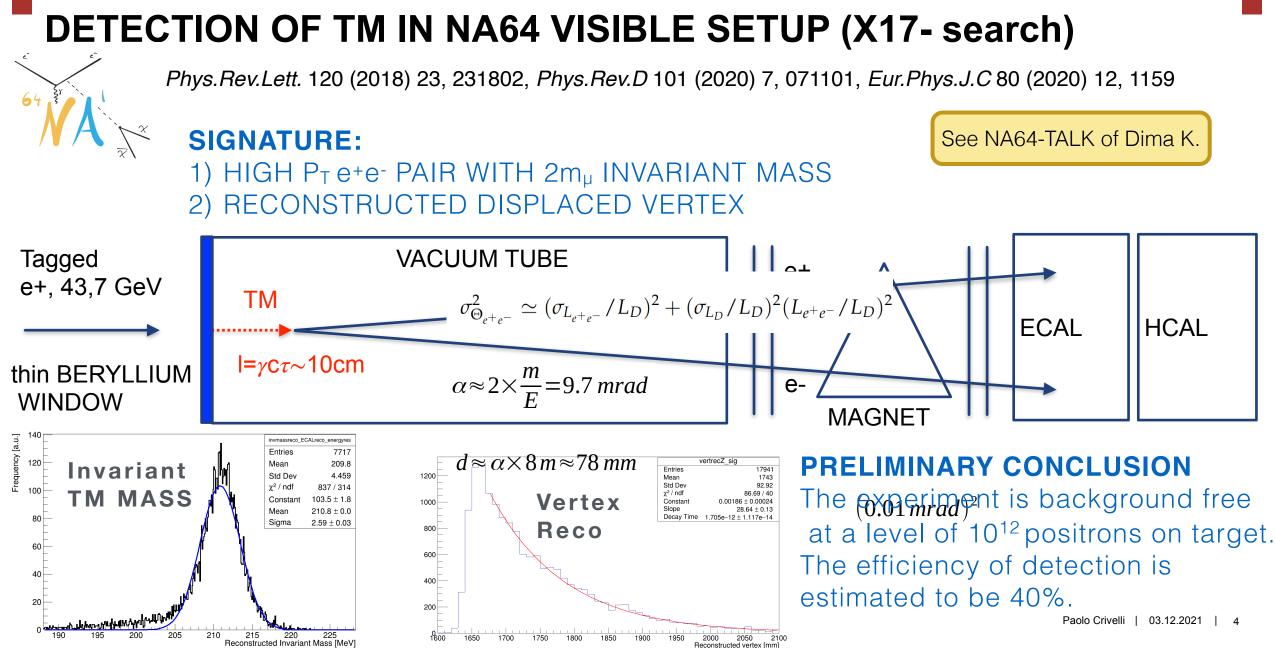
RATIO DIMUON PAIR VS BOUND STATES PRODUCTION

$$R = \frac{\sigma^{e^+e^- \to \mu^+\mu^-}(s_B)}{\sigma_{\rm rel}^{e^+e^- \to \mu^+\mu^-}(s_B)} \simeq \frac{\sigma^{e^+e^- \to (\mu^+\mu^-)}}{\sigma_{\rm rel}^{e^+e^- \to \mu^+\mu^-}} \simeq \frac{3\pi\alpha}{2} \simeq 0.03$$

S. J. Brodsky and R. F. Lebed,, Phys. Rev. Lett. 102 (2009) 213401

In fixed targets
$$\sigma^{e^+e^- \to \mu^+\mu^-}(E_+) = \frac{2\pi^3 \alpha^2}{m_{\mu}^2} \sqrt{1 - \frac{E_{\rm th}}{E_+}} = \frac{2\pi^4 \alpha^3}{\mu^2} \simeq 2.65 \cdot 10^{-30} \,\,{\rm cm}^2$$

Production of TM close to threshold in FIXED TARGET experiments


$$\sigma_{(n)}^{e^+e^- \to (\mu^+\mu^-)}(E_+) = \frac{3\pi\alpha}{2} \frac{\delta E_n}{\Delta E_+} \times \sigma^{e^+e^- \to \mu^+\mu^-}(E_+)$$
$$\simeq \frac{\delta E_n}{\Delta E_+} \times 9.11 \cdot 10^{-32} \text{ cm}^2$$

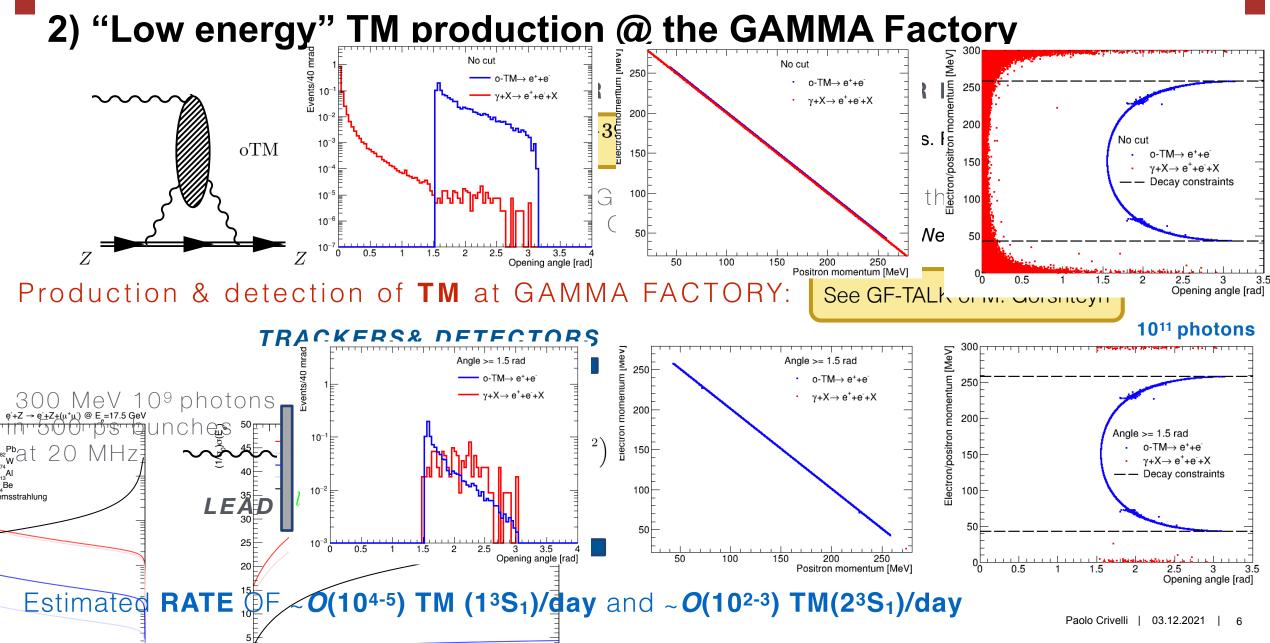
where $\delta E_n = \alpha^2 m_{\mu}/(4n^2)$ is the effective energy window to produce the bound states and ΔE the beam energy resolution

H4 A UNIQUE BEAMLINE:
>10⁷ POSITRONS per spill @43.7 GeV with (dp/p<1%)
Estimated RATE OF TM ~O(1) event/month (target optimisation ongoing)

See TALK of Nikos C.

UPDATE- 43.7 GeV positron beam in H4 at SPS

1st QUICK TEST (2 hours) DURING NA64 BEAMTIME (September 2021)

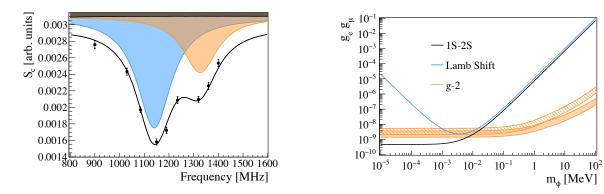

GOAL: Cross check beam simulation, i.e. **positron intensity, momentum resolution** and measure **hadron contamination**

				Pesults from double gaussian ft	2 Entries 298887
Run	Туре	Spills	Intensity	E Reconstructed Momentum = 44.01 GeV	be the second s
5168	e+	30	1.7 x 10 ⁶	10 ⁴ Recruitured Momentum 44.01 GeV	SRD - run 5169
5169	e+	20	7.7 x 10 ⁶		10 ³ - SRD - run 5169 10 ² - SRD - run 5170 10 ² - SRD - run 5170
5170	hadron	90	5 x 10 ³	10 ² 32 34 36 38 40 42 44 46 48 50 Energy(GeV)	

Decenstructed memory um for positre

Preliminary results are encouraging: ~10⁷ POSITRONS per spill @43.7 GeV with (dp/p<1%). New measurements in 2022 are planned including background measurements in visible setup.

MEASUREMENT OF TM LAMB SHIFT AND FINE AND HFS


STRUCTURE

Similar measurement

TRUE MUONIUM TRANSITIONS:

Transition	E_{theory} [MHz]
$1^{3}S_{1} - 1^{1}S_{0}$	42329355(51) _{had} (700)
$2^{3}S_{1} - 1^{3}S_{1}$	$2.550014(16) \times 10^{11}$
$2^{3}P_{0} - 2^{3}S_{1}$	$1.002(3) \times 10^7$
$2^{3}P_{1} - 2^{3}S_{1}$	$1.115(3) \times 10^7$
$2^{3}P_{2} - 2^{3}S_{1}$	$1.206(3) \times 10^7$
$2^1 P_1 - 2^3 S_1$	$1.153(3) \times 10^7$

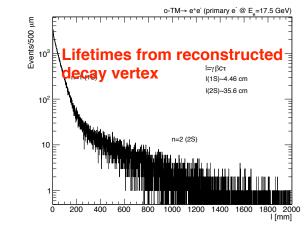
TRUE MUONIUM

https://arxiv.org/abs/2108.12891

42 THz **HFS accessible via 7 micron LASER** (e.g. with Quantum Cascade Lasers,P. Täschler et al., *Nat. Photon.* **15,** 919–924 (2021).) Natural line width of 350 GHz

LS 10 THz, Natural line width of 20 GHz

SIGNATURE HFS or 2S-2P TRANSITIONS: COUNT NUMBER OF HIGH PT e+e-PAIRS VS LASER FREQUENCY



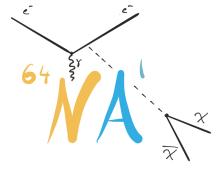
SUMMARY AND OUTLOOK

- Feasibility of TM DETECTION WITH NA64 VISIBLE SETUP:
 - analysis of H4 with 43.7 GeV positrons ongoing,
 - cross check simulation with data on NA64 visible setup (2022)
- Proof of principle in NA64 for measuring TM properties @ FUTURE CERN FACILITIES
- e.g @LEMMA in beam dump mode: for 10¹⁶ e⁺, dE=1 MeV, 10⁴ TM ^{M. Boscolo et al. Phys.Rev.Accel.Beams 21 (2018)} 6. 061005 N. Amapane et al 2020 JINST 15 P01036

or @GAMMA FACTORY (10¹⁷ gamma/s @up to 400MeV),10⁴⁻⁵ TM/day"

Precision study of TM properties such as decay rate, Lamb shift, Fine and HFS structure

- IN PBC CONTEXT
 - Complementarity of TM to search for NP in muonic sector
 - Synergies (simulation/detectors/calculations) with other projects at the high intensity frontier Paolo Crivelli 03.12.2021


Acknowledgments

For help with the simulation Henri Sieber, Emilio Depero, Laura Molina Bueno, Benjamin Banto-Oberhauser

NA64 collaboration and in particular S: Gninenko, Dmitriy Kirpichnikov and V. Lyubovitsky

The CERN beam department for all their support: In particular Dipanwita Banerjee, Nikos Charitonidis and Lau Gatignon

For very useful discussion Witek Krasny, Stan Brodsky, Rich Lebed, Yotam Soreq, Armen Apyan, Klaus Jungmann

