# Hydrostatics and Hydrodynamics of the Tank

- Shardul Joshi

Vishwakarma Institute of Information Technology (VIIT), India



## **Contents of the Presentation**

- Hydrostatic Analysis
- Modal Analysis
- Mathematical Modelling of Sloshing



## Static Analysis

#### **Boundary Condition**

The bottom plates are restricted to all dofs.

#### <u>Loads</u>

Self wt.( Gravity)+ Hydrostatic Pressure on tank walls ( ht. of water =3.4m) +100 kg (CDS) on top rafters

- Wt. of Water = 38.50 tons
- Ht. of Water level = 3400mm
- Tank Wall Thickness = 6mm



### Tank Results



Max. Displacement = 0.67 mm



#### Tank Results



Max. Displacement = 0.67 mm

Max. Stress = 57.42 MPa

5

#### Hydrostatic Analysis

#### **Base Results**



Max. Displacement = 0.22 mm

Max. Stress = 60.70 MPa

#### **Base Results**



## **Beam Window Details**



2 mm Concave

#### Hydrostatic Analysis

## **Tertiary Beam Window**







## Conclusion

From the results we can infer that

- The maximum stress and displacement due to Hydrostatic Pressure on the Tank assembly occurs on the Tank base of **60.70 MPa** .
- The maximum displacement is obtained on the tertiary beam i.e., **0.50mm**
- In the study, the model appears to be safe by the factor of safety **3.46** (w.r.t to yield stress of 207 MPa)

| Tank                             |                              | Tertiary Beam<br>Window          |                              | Base Mesh                        |                              | Factor       |
|----------------------------------|------------------------------|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------|
| Max.<br>VonMises<br>stress (MPa) | Max.<br>Displacement<br>(mm) | Max.<br>VonMises<br>stress (MPa) | Max.<br>Displacement<br>(mm) | Max.<br>VonMises<br>stress (MPa) | Max.<br>Displacement<br>(mm) | of<br>Safety |
| 57.42                            | 0.67                         | 45.20                            | 0.50                         | 60.70                            | 0.22                         | 3.46         |

## Modal Analysis

#### **Boundary Condition**

The bottom plates are restricted to all dofs.

#### <u>Loads</u>

Self wt.( Gravity)+ Hydrostatic Pressure on tank walls (free surface ht. =3.4m) +100 kg (CDS) on top rafters

Analysis up to 50 Natural Modes Structure and Tank are not coupled in this Study





Analysis system

Simple Average

4.932

4.384

-









## Results

| MODAL PARTICIPATION FACTORS FOR SUBCASE 3<br>RIGID BODY MODES BASED ON REFERENCE POINT AT ORIGIN OF BASIC COORDINATE SYSTEM |           |            |            |            |            |            |            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|------------|------------|------------|------------|--|--|--|--|
| Mode                                                                                                                        | Frequency | X-TRANS    | Y-TRANS    | Z-TRANS    | X-ROTAT    | Y-ROTAT    | Z-ROTAT    |  |  |  |  |
| 1                                                                                                                           | 1.044E+01 | -1.077E+00 | 3.128E-07  | 5.367E-02  | 1.464E+02  | 1.731E-01  | 2.888E+03  |  |  |  |  |
| 2                                                                                                                           | 1.068E+01 | -5.391E-02 | 9.424E-05  | -1.068E+00 | -2.878E+03 | -1.190E-01 | 1.463E+02  |  |  |  |  |
| 3                                                                                                                           | 1.682E+01 | 7.458E-05  | 2.006E-03  | -4.195E-05 | -1.119E-01 | 1.656E+03  | -2.466E-01 |  |  |  |  |
| 4                                                                                                                           | 2.872E+01 | -9.483E-02 | -3.873E-02 | 3.779E-02  | 5.492E+01  | -2.873E+02 | 5.444E+01  |  |  |  |  |
| 5                                                                                                                           | 2.908E+01 | 5.511E-03  | -8.250E-01 | 9.631E-03  | 2.172E+01  | 1.516E+01  | -3.505E+00 |  |  |  |  |
| 6                                                                                                                           | 3.505E+01 | 2.656E-02  | -1.340E-02 | 2.890E-01  | 6.916E+02  | 1.880E+01  | -5.038E+01 |  |  |  |  |
| 7                                                                                                                           | 3.591E+01 | -2.413E-02 | 2.247E-03  | 4.619E-04  | 2.521E+02  | -1.622E+00 | 3.417E+02  |  |  |  |  |
| 8                                                                                                                           | 3.607E+01 | 1.763E-02  | 3.327E-04  | 1.722E-03  | 2.932E+02  | -3.510E-01 | -2.911E+02 |  |  |  |  |
| 9                                                                                                                           | 3.613E+01 | -5.311E-03 | -4.411E-03 | -3.133E-04 | 7.264E-01  | -8.039E-01 | 7.323E+01  |  |  |  |  |
| 10                                                                                                                          | 3.669E+01 | 1.778E-03  | -3.551E-03 | -3.214E-04 | 4.105E-01  | -1.148E+01 | -8.333E-02 |  |  |  |  |

Critical frequency of tank with structure is:

X dir. = 10.44 Hz

Y dir. = 29.08 Hz

Z dir. = 10.68 Hz

These frequencies will be required to perform the water sloshing analysis

#### Mathematical Model for Water Sloshing



*Ref: "George Housner"*, *The dynamic behavior of water tanks* 

Water Sloshing

#### Wave Height vs Velocity



## Conclusion

- The natural frequency of the water sloshing of the designed tank is **0.5 Hz**.
- The velocity of water corresponding to wave height of 200mm is **0.44 m/s**.
- The initial acceleration of the tank to attain velocity of water 0.44 m/s is under study.



# Thank You

