Doubly charmed tetraquark at LHCb and future prospects

LHCb

Picture:S. Velasco, Quanta Magazine

Ivan Polyakov

LPHE EPFL Seminar, 29 November 2021

Outlook

Introduction -

QCD, hadron spectroscopy theory and predictions for $QQ\overline{qq}$ '

- The T_{cc}⁺ tetraquark:
 - LHCb detector & Selection
 - Observation of the signal
 - Study with unitarized model
 - Interpretations
 - Production properties

- Discussion
 - Reflection on the results
 - Open questions
 - Future possibilities

High Energy Physics frontiers

- The known QCD is not that well known
- And it's understanding also limits the hunt for non-direct signs of NP: B-decays, g-2 of µ, ...

QCD vs. Hadron Spectorscopy

 QCD is successful theory giving in precise predictions at high energies

 However is higly non-perturbative at hadron/nuclei energy scale

- S. Bethke, P. Zerwas 2004 0.5 Phys. J. 3 12 31. ▲ deep inelastic scattering $\alpha_{s}(Q)$ o● e⁺e⁻ annihilation hadron collisions 0.4 heavy quarkonia 0.3 0.2 0.1 QCD $\alpha_{s}(M_{7}) = 0.118 \pm 0.003$ 10 100 Q (GeV)
- Hrayr Matevosyan

 Therefore for hadron spectroscopy (semi-)phenomenological approaches have to be used. *mini-review in the following* (oversimplified & incomplete) Ivan Polyakov, Syracuse University

4

Theory approaches, 1

- Effective approach for compact hadrons ("bag" model)
 - Heavy Quank Symmetry explansion in 1/m_o + kinematic corrections
 - Sum of quark masses, binding, hyperfine interaction
 - extracting effective parameters from measured hadron masses
 - may involve assumptions about diquarks, string, ...

see in predictions for T_{cc}+: Eichten, Quigg, 2017 Braaten, He, Mohapatra, 2020 Karliner, Rosner, 2017 ... and much more ...

Molecula objects (for exotics)

corresponding form-fators and cut-offs not well controlled

 \mathbf{q}_3

Theory approaches, 2

Exotic hadrons

Understanding is limited by the quark configurations to consider

- Conventional hadrons: $q_1 \overline{q}_2$ and $q_1 q_2 q_3$
- Exotic hadrons: ccq_1q_2 and $ccq_1q_2q_3$ ~30 tetra/pentaquarks candidates discovered since observation of $\chi_{c1}(3872)$ by Belle in 2003
 - most have $Q\overline{Q}$ pair and large width,
 - interpretations are still unclear molecula/compact
 - and even resonance nature is questioned

States	Quark content
$X_0(2900), X_1(2900)$ [21,22]	c du s
$\chi_{c1}(3872)$ [6]	$c\overline{c}q\overline{q}$
$\begin{array}{l} Z_{c}(3900) \ [23], \ Z_{c}(4020) \ [24,25], \ Z_{c}(4050) \ [26], \ X(4100) \ [27], \\ Z_{c}(4200) \ [28], \ Z_{c}(4430) \ [29\mathchar], \ R_{c0}(4240) \ [31] \end{array}$	$c\overline{c}u\overline{d}$
$Z_{cs}(3985)$ [33], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [34]	$c\overline{c}u\overline{s}$
$\begin{array}{l} \chi_{c1}(4140) [35 - 38], \chi_{c1}(4274), \chi_{c0}(4500), \chi_{c0}(4700) [38], \\ X(4630), X(4685) [34], X(4740) [39] \end{array}$	ccss
X(6900) [14]	cccc
$Z_{b}(10610), Z_{b}(10650)$ [40]	$b\overline{b}u\overline{d}$
$\begin{array}{c c} P_{c}(4312) & [41], & P_{c}(4380) & [42], & P_{c}(4440), & P_{c}(4457) & [41], \\ P_{c}(4357) & [43] \end{array}$	ccuud
$P_{cs}(4459)$ [44]	$c\overline{c}uds$

- QQq'q'' are prime candidates to be bound and therefore long-lived
 - first estimates (based on V_{qq}(r)~r^{0.1} approximation)

stated that should happen for $m_q/m_q > 6-8$ (compare to $m_b/m_u \sim 15$, $m_c/m_u \sim 5-6$)

Adler, Richard, Taxil, 1982 Ballot, Richard, 1983

Predictions for ccud mass

 More recent calculations (including Lattice Q all agree that it should be true for [bb][ud] u with QQ forming compact d color anti-triplet and resulting binding of ~150MeV

However not clear for [bc][ud] and [cc][ud]

 Predictions for a ground ccud state (isoscalar with $J^{P}=1^{+}$) vary within ±250MeV wrt to D⁰D*+ threshold

Ivan Polyakov, Syracuse University

QCD)	$\delta m \equiv m_{\rm T}$	$r_{\rm cc}^+ - (m_{\rm D^{*+}} + m)$	D_0
		J. Carlson <i>et al.</i>	1987
		B. Silvestre-Brac and C. Semay	1993
	L .	C. Semay and B. Silvestre-Brac	1994
		M. A. Moinester	1995
		S. Pepin <i>et al.</i>	1996
1		B. A. Gelman and S. Nussinov	2003
	-	J. Vijande <i>et al.</i>	2003
		D. Janc and M. Rosina	2004
		F. Navarra <i>et al.</i>	2007
	•	J. Vijande <i>et al.</i>	2007
	•	D. Ebert <i>et al.</i>	2007
		S. H. Lee and S. Yasui	2009
· · · · · · · · · · · · · · · · · · ·		Y. Yang et al.	2009
F F	_	N. Li <i>et al.</i>	2012
	-	GQ. Feng <i>et al.</i>	2013
		SQ. Luo et al.	2017
	iei	M. Karliner and J. Rosner	2017
		E. J. Eichten and C. Quigg	2017
	-	Z. G. Wang	2017
	—	W. Park <i>et al.</i>	2018
	•	P. Junnarkar <i>et al.</i>	2018
•		C. Deng <i>et al.</i>	2018
	н	MZ. Liu <i>et al.</i>	2019
н		L. Maiani <i>et al.</i>	2019
		G. Yang <i>et al.</i>	2019
•		Y. Tan <i>et al.</i>	2020
	•	QF. Lü <i>et al.</i>	2020
	101	E. Braaten <i>et al.</i>	2020
	-	D. Gao <i>et al.</i>	2020
	•	JB. Cheng <i>et al.</i>	2020
	•	S. Noh <i>et al.</i>	2021
	•	R. N. Faustov <i>et al.</i>	2021
-300 -200 -100	$\frac{1}{5}m \qquad \frac{1}{100} \frac{200}{300} \frac{300}{5}m \frac{1}{100} $	[see Refs. in pap]	oer]

Sm

	J. Carlson <i>et al.</i>	1987
	B. Silvestre-Brac and C. Semay	1993
	C. Semay and B. Silvestre-Brac	1994
	M. A. Moinester	1995
	S. Pepin <i>et al.</i>	1996
	B. A. Gelman and S. Nussinov	2003
	J. Vijande <i>et al.</i>	2003
	D. Janc and M. Rosina	2004
	F. Navarra <i>et al.</i>	2007
	J. Vijande <i>et al.</i>	2007
	D. Ebert <i>et al.</i>	2007
	S. H. Lee and S. Yasui	2009
	Y. Yang <i>et al.</i>	2009
	N. Li <i>et al.</i>	2012
	GQ. Feng <i>et al.</i>	2013
	SQ. Luo et al.	2017
	M. Karliner and J. Rosner	2017
	E. J. Eichten and C. Quigg	2017
	Z. G. Wang	2017
	W. Park <i>et al.</i>	2018
	P. Junnarkar <i>et al.</i>	2018
	C. Deng <i>et al.</i>	2018
	MZ. Liu <i>et al.</i>	2019
	L. Maiani <i>et al.</i>	2019
	G. Yang <i>et al.</i>	2019
	Y. Tan <i>et al.</i>	2020
	QF. Lü <i>et al.</i>	2020
	E. Braaten <i>et al.</i>	2020
	D. Gao <i>et al.</i>	2020
	JB. Cheng <i>et al.</i>	2020
	S. Noh <i>et al.</i>	2021
	R. N. Faustov <i>et al.</i>	2021
л 21	[see Refs. in pap	erl

"Observation of an exotic narrow doubly charmed tetraquark"

arXiv:2109.01038

& "Study of the doubly charmed tetraquark T_{cc}+"

arXiv:2109.01056

The LHCb detector

Previous hadrons with two c-quarks • The observations of Ξ_{cc}^{++} [ccu] and X[cccc] \rightarrow J/ ψ J/ ψ indicate that if the [ccud] exists it should be accessible at LHCb in DD^(*) final states **E**_{cc} Xcccc $\rightarrow J/\psi J/\psi$ Candidates / (5 MeV/c²) 28 MeV/c²) - Data LHCb 200LHCb 800 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ - Total 180 --- Signal 160 250 N_{sia} ~ 1.6k hreshold BW2 600 ---- Background 140Veighted candidates 120 100 400 80 60 200 20 3600 3700 3500 6200 7000 8000 9000 $m_{\rm cand}(\Xi_{cc}^{++})$ [MeV/ c^2] $M_{{ m di-}J/\psi}~({ m MeV}/c^2)$ JHEP 02 (2020) 049 Sci. Bul. 65 (2020) 1983

Ivan Polyakov, Syracuse University

Selection of $D^0D^0\pi^+$

- Select prompt $D^0D^0\pi^+$ candidates via $D^0 \rightarrow K^-\pi^+$
- Require non-prompt K⁻ & π^+ with high p_{τ}
- Require good quality of track, vertexes & particle identification
- Ensure no K/π candidates belong to one track (clones)

or duplicates or reflections via mis-ID

• Subtract fake-D background using 2D fit to $(m_{\kappa\pi}, m_{\kappa\pi})$

- A narrow peak near DD* threshold is seen
- No peaking structures in sidebands or opposite-sign mode (can't be explained by DCS decay $D^0 \rightarrow K^+\pi^-$)
- The structure is present in all different data taking condition subsamples

Cross-checks

- Different years, data taking conditions
- Exclude double-counting, ensure no duplicated tracks
- No reflections from mis-identification
- Ensure peaks produced by true D⁰ candidates

Mass distributions with fake D°'s

Fit with Breit-Wigner function

- The distribution is fit with a sum of
 - P-wave relativistic Breit-Wigner
 - $D^{*+}D^{0}$ phase space x pol₁ both convolved with resolution of ~400keV

- Found to be below the D*+D⁰ threshold (with 4.3σ significance for "below D*+D⁰")
- Results:

Parameter	Value
N	117 ± 16
$\delta m_{\rm BW}$	$-273 \pm 61 \text{ keV}/c^2$
$\Gamma_{\rm BW}$	$410\pm165\mathrm{keV}$

Decay amplitude

- Construct an advanced model assuming
 - T_{cc}⁺ is isoscalar
 - J^P=1⁺
 - Same coupling for decays to DD*

$$\left| T_{cc}^{+} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| D^{*+} D^{0} \right\rangle - \left| D^{*0} D^{+} \right\rangle \right)$$

• Derive amplitudes for $X \rightarrow DD^*$ (as $1^+ \rightarrow 0^-1^-$ in S-wave) and $D^* \rightarrow D\pi/\gamma$ (as $1^- \rightarrow 0^-0^-/1^-$): (parameters *f*, *h*, μ – from known BR) $\mathcal{A}_{D^{*+}\rightarrow D^0\pi}$

$$\mathcal{A}_{\mathrm{T}_{\mathrm{cc}}^{+} \to \mathrm{D}^{*+}\mathrm{D}^{0}}^{\mathrm{S-wave}} = +\frac{g}{\sqrt{2}} \epsilon_{\mathrm{T}_{\mathrm{cc}}^{+} \mu} \epsilon_{\mathrm{D}^{*}}^{*\mu}$$
$$\mathcal{A}_{\mathrm{T}_{\mathrm{cc}}^{+} \to \mathrm{D}^{*0}\mathrm{D}^{+}}^{\mathrm{S-wave}} = -\frac{g}{\sqrt{2}} \epsilon_{\mathrm{T}_{\mathrm{cc}}^{+} \mu} \epsilon_{\mathrm{D}^{*}}^{*\mu}$$

$$\begin{aligned} \mathcal{A}_{\mathrm{D}^{*+}\to\mathrm{D}^{0}\pi^{+}} &= f\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} \\ \mathcal{A}_{\mathrm{D}^{*+}\to\mathrm{D}^{+}\pi^{0}} &= -\frac{f}{\sqrt{2}}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} \\ \mathcal{A}_{\mathrm{D}^{*0}\to\mathrm{D}^{0}\pi^{0}} &= +\frac{f}{\sqrt{2}}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} , \\ \mathcal{A}_{\mathrm{D}^{*}\to\gamma\mathrm{D}} &= i\mu\hbar\epsilon_{\alpha\beta\eta\xi}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}^{*}}^{\beta}\epsilon_{\gamma}^{*\eta}p_{\gamma}^{\xi} \end{aligned}$$

and combine them to together

$$\begin{split} \mathcal{A}_{\pi^{+}\mathrm{D}^{0}\mathrm{D}^{0}} &= \frac{fg}{\sqrt{2}} \epsilon_{\mathrm{T}_{\mathrm{cc}}^{+}\nu} \left[\mathfrak{F}_{+}(s_{12}) \times \left(-p_{2}^{\nu} + \frac{(p_{2}p_{12})p_{12}^{\nu}}{s_{12}} \right) + (p_{2} \leftrightarrow p_{3}) \right] , \\ \mathcal{A}_{\pi^{0}\mathrm{D}^{+}\mathrm{D}^{0}} &= -\frac{fg}{2} \epsilon_{\mathrm{T}_{\mathrm{cc}}^{+}\nu} \left[\mathfrak{F}_{+}(s_{12}) \times \left(-p_{2}^{\nu} + \frac{(p_{2}p_{12})p_{12}^{\nu}}{s_{12}} \right) + \left(\begin{array}{c} p_{2} \leftrightarrow p_{3} \\ \mathfrak{F}_{+} \leftrightarrow \mathfrak{F}_{0} \end{array} \right) \right] \\ \mathcal{A}_{\gamma\mathrm{D}^{+}\mathrm{D}^{0}} &= i \frac{hg}{\sqrt{2}} \epsilon_{\alpha\beta\eta\xi} \epsilon_{\mathrm{T}_{\mathrm{cc}}^{+}}^{\beta} \epsilon_{\gamma}^{\eta} p_{\gamma}^{\xi} \left[\mu_{+} \mathfrak{F}_{+}(s_{12}) p_{12}^{\alpha} - \mu_{0} \mathfrak{F}_{0}(s_{13}) p_{13}^{\alpha} \right] \\ \mathfrak{F}(s) &= \frac{1}{m_{\mathrm{D}^{*}}^{2} - s - im_{\mathrm{D}^{*}} \Gamma_{\mathrm{D}^{*}}} \end{split}$$
Ivan Polyakov, Syracuse University

Unitarized 3-body BW model

 $\varrho_f(s)$

12

Constructed advanced 3-body Breit-Wigner model where

 3-body phase-space is calculated via integral of X → DD*[→ Dπ/γ] matrix element over D⁰D^{0/+}π⁺/γ Dalitz plot
 ~¹U ()

$$\begin{split} \mathfrak{F}_{f}^{\mathrm{U}}\left(s\right) &= \varrho_{f}\left(s\right)\left|\mathcal{A}_{\mathrm{U}}\left(s\right)\right|^{2},\\ \mathcal{A}_{\mathrm{U}}\left(s\right) &= \frac{1}{m_{\mathrm{U}}^{2}-s-im_{\mathrm{U}}\hat{\Gamma}(s)} \end{split}$$
$$\varrho_{f}(s) &= \frac{1}{(2\pi)^{5}}\frac{\pi^{2}}{4s}\iint ds_{12}ds_{23}\frac{\left|\mathfrak{M}_{f}\left(s,s_{12},s_{23}\right)\right|}{\left|g\right|^{2}} \end{split}$$

and where complex width is derived as

$$im_{\rm U}\hat{\Gamma}(s) \equiv |g|^2 \Sigma(s)$$

total

 $D^0 D^0 \pi^+$

 $D^+D^0\pi^0$

 $D^+D^0\gamma$

Imaginary part for unitarity (optical theorem)

$$\Im \Sigma(s)|_{\Im s=0^{+}} = \frac{1}{2}\varrho_{\text{tot}}(s),$$
$$\varrho_{\text{tot}}(s) \equiv \sum_{f} \varrho_{f}(s)$$

Real part for analyticity (Kramers-Kronig relations)

$$\begin{split} \Re \Sigma(s)|_{\Im s=0^+} &= \xi(s) - \xi(m_{\mathrm{U}}^2) \,, \\ \xi(s) &= \frac{s}{2\pi} \operatorname{p.v.} \int_{s_{\mathrm{th}}^*}^{+\infty} \frac{\varrho_{\mathrm{tot}}(s')}{s'(s'-s)} ds' \end{split}$$

Ivan Polyakov, Syracuse University

15.

 $[\text{GeV}^2]$

Fit with unitarized model

- Fit to same data, use same model as before except for the signal function
- Peak position below D⁰D*⁺ threshold with ~9σ significance!

Mass shape in unitarized model

- Fit result (before smearing with resolution)
- Close to Breit-Wigner in proximity to peak maximum
- Large tail above DD* thresholds

Fits with Naive and Unitarized models

Compare position of peak maximum and FWHM (before convolving with resolution)

	$\delta \mathfrak{m} \ [\text{keV}/c^2]$	$\mathfrak{w} [\text{keV}/c^2]$
too naive	$ BW -279 \pm 59 U -361 \pm 40 $	$409 \pm 163 \\ 47.8 \pm 1.9$

Both consistent with data

Consistency of Naive and Unitarized

- Generate 25k pseudoexperiments using unitarized BW model, fit them with naive BW model. Get $\delta'm_{_{BW}}$ and $\Gamma_{_{BW}}$ consistent with values obtained from data
- Generate 4k pseudoexperiments using naive BW model, fit them with unitarized BW model. Get δ'm₀ consistent with values obtained from data
- Consistent considering current statistics, mass resolution and background

Parame	ter	Pseudoez mean	${ m cperiments} { m RMS}$	Data
$\delta m_{ m BW} \ \Gamma_{ m BW}$	$\frac{[\text{keV}/c^2]}{[\text{keV}]}$	$-301 \\ 222$	$50\\121$	$-273 \pm 61 \\ 410 \pm 165$ 84
$\delta m_{ m U}$	$[\text{keV}/c^2]$	-378	46	-359 ± 40

Systematic uncertainties (unitarized model)

 Fit model 	Source	σ.	$[k_{e}V/c^{2}]$
 try alternative resolution functions 	Source	$0 \delta m_{\rm U}$	[Kev/C
 apply ±5% correction for resolution scale 	Fit model		
try alternative background models	Resolution model		2
vary coupling constants f,h,µ within	Resolution correction factor	•	2
related uncertainties from	Background model		2
BR(D [*] \rightarrow D π / γ) and Γ (D [*])	Coupling constants		1
try smaller value for g	Unknown value of $ g $		$^{+7}_{-0}$
$\sim 1/2$ m c m	Momentum scaling		3
• vary momentum scale by ±0.03%	Energy loss		1
 Vary energy loss correction by ±10% 	$D^{*+} - D^0$ mass difference		2
 Uncertainty on D^o mass cancels out in 	Total		$^{+9}_{-6}$
difference, while account for uncertainty on m(D*+)-m(D ⁰)			

• Fit model systematics considered for the lower limit of [g] changing it to |g| > 5.1 (4.3) GeV at 90 (95) % CL

Additional Studies

Offshell D*⁺

- Integrate unitarized model over $D^0D^0\pi^+$ and D^0D^0 masses $\rightarrow\,$ obtain $D^0\pi^+$ shape

Perfect agreement supports the assumptions:

- $T_{cc} \rightarrow DD^*$ decaying via off-shell D*
- $J^{P}=1^{+}$ assignement for T_{cc}

Partially reconstructed $T_{cc} \rightarrow D^0 D^{0/+} X$

• Obtain D⁰D⁰ mass shape from $T_{cc} \rightarrow D^0 D^{*+}(\rightarrow D^0 \pi^+)$ and $D^0 D^+$ mass shape from $T_{cc} \rightarrow D^0 D^{*+}(\rightarrow D^+ \pi^0)$ and $T_{cc} \rightarrow D^+ D^{*0}(\rightarrow D^0 \pi^0/\gamma)$ in the same way as for $D^0 \pi^+$

 Relative yields are in agreement with model expectations for isoscalar T_{cc} with J^P=1⁺ and D^{0/+} reconstruction efficiencies

T_{cc} isospin

• If assume that $X \rightarrow D^0D^0\pi^+$ signal is part of an iso-triplet, then one can estimate masses of its partners to be: from Σ_h and Σ_c isotriplets

$$\begin{split} m_{\hat{T}_{cc}^{0}} &= m_{\hat{T}_{cc}} + m_{u} + m_{u} - a' q_{\overline{u}} q_{\overline{u}} - b' q_{cc} \left(q_{\overline{u}} + q_{\overline{u}} \right) \\ m_{\hat{T}_{cc}^{+}} &= m_{\hat{T}_{cc}} + m_{u} + m_{d} - a' q_{\overline{u}} q_{\overline{d}} - b' q_{cc} \left(q_{\overline{u}} + q_{\overline{d}} \right) \\ m_{\hat{T}_{cc}^{++}} &= m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' q_{\overline{d}} q_{\overline{d}} - b' q_{cc} \left(q_{\overline{d}} + q_{\overline{d}} \right) \\ m_{\hat{T}_{cc}^{0}} - \left(m_{D^{0}} + m_{D^{*0}} \right) &= -2.8 \pm 1.5 \,\mathrm{MeV}/c^{2} \\ m_{\hat{T}_{cc}^{++}} - \left(m_{D^{+}} + m_{D^{*+}} \right) &= 2.7 \pm 1.3 \,\mathrm{MeV}/c^{2} \end{split}$$

- Should therefore see a comparable peak from
 - $T_{cc}^{++} \rightarrow D^+D^{++}$ decay (100-200 events) in D^+D^+ and $D^+D^0\pi^+$, no signal is seen

Pole position

 Within the advanced decay model (with dominant role of DD* decay mode) find pole position as solution

$$\frac{1}{\mathcal{A}_{\rm U}^{II}(\hat{s})} = 0$$
$$\sqrt{\hat{s}} \equiv m_{\rm pole} - \frac{i}{2}\Gamma_{\rm pole}$$
$$\delta\sqrt{s} \equiv \sqrt{s} - (m_{\rm D^{*+}} + m_{\rm D^0})$$

Result

$\delta m_{ m pole}$	=	$-360 \pm 40^{+4}_{-0} \text{ keV/}c^2$,
$\Gamma_{\rm pole}$	=	$48 \pm 2^{+0}_{-14} \mathrm{keV},$

Low-energy expansion

From expansion near pole can extract low-energy scattering parameters

$$\mathcal{A}_{\rm NR}^{-1} = \frac{1}{a} + r\frac{k^2}{2} - ik + \mathcal{O}(k^4)$$

• scattering length: $a = \left[-(7.16 \pm 0.51) + i (1.85 \pm 0.28) \right] \text{fm}$

- characteristic size: $R_a \equiv -\Re a = 7.16 \pm 0.51 \,\mathrm{fm}$
- effective range: $0 \leq -r < 11.9 (16.9) \text{ fm at } 90 (95)\% \text{ CL}$
- Weinberg compositness:

Z < 0.52 (0.58) at 90 (95)% CL

size in case of D⁰D*+ molecula:

$$R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \,\mathrm{fm}$$

²³⁸U: r~5.8fm

ul 🚬

Deuteron:

T_{cc}⁺: r~7.5fm

r~2.1fm

Production vs track multuplicity

- Based on characteristic size one can expect that T_{cc}^{+} has some properties similar to χ_{c1} (3872)
- For $\chi_{c1}(3872)$ production a suppression wrt $\psi(2S)$ was observed at high track multiplicities
- Explained in comover model where $\chi_{c1}(3872)$ is broken by closely flying pions/gluons

 Therefore probing effective Qπ break-up cross-section:

> $\langle v\sigma_{\psi'} \rangle = 3.9 \pm 0.8 \text{ mb}$ $\langle v\sigma_X \rangle = 2.6 \pm 0.7 \text{ mb}$

and fractions of Q out of reach of comovers

more details in Braaten et al., arXiv:2021.13499

T_{cc} multiplicity distribution

- Compare $T_{cc}^{+} \rightarrow D^0 D^0 X$ signal distributions with
 - D⁰D⁰ in 3.75<m_{DD}<3.87 GeV region

(presumably dominated by double-parton scattering)

- $D^0\overline{D}^0$ in m_{DD} < 3.87 GeV region (mainly single pp $\rightarrow D\overline{D}$ production)

- No suppression of T_{cc}^+ wrt $D\overline{D}$ (and also to DD) at high multiplicities in contrast to X(3872) wrt $\Psi(2S)$
- Intriguing similarity with cc+cc

Transverse momenta spectra

- Compare $T_{cc}^{+} \rightarrow D^0 D^0 X$ signal distributions with
 - D⁰D⁰ in 3.75<m_{DD}<3.87 GeV region

(presumably dominated by double-parton scattering)

- $D^0\overline{D}^0$ in m_{pp}<3.87 GeV region (mainly single pp $\rightarrow D\overline{D}$ production)

Intriguing similarity with $c\overline{c}+c\overline{c}$

Discussions

Reflections on measured mass, 1

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

is consistent with some of predictions.

Few notable matches for δm predictions:

[-1,+13] MeV Semay, SIlvestre-Brac, 1994 (NR quark-quark potential model) false prediction (1993) for spin-0&1 ccqq states with masses ~3300-3400 MeV

- [-2.7,-0.6] MeV Janc, Rosina, 2003 (NR quark-quark potential model)
 -0.6 MeV corresponds to Bhaduri potential
- [-42.1;+0.3] or [-18;+1] MeV (OME exchange in DD* molecula)

Li, Sun, Liu, Zhu, 2012 Liu,

Liu, Wu, Valderrama, Xie, Geng, 2019

- 1±12 MeV Karliner, Rosner, 2017
 (phenomenology model for compact tetraquark)
- -23±11 MeV Junnarkar, Mathur, Padmanath, 2018 (Lattice QCD)

Ivan Polyakov, Syracuse University

J. Carlson <i>et al.</i>	1987
B. Silvestre-Brac and C. Semay	1993
C. Semay and B. Silvestre-Brac	1994
M. A. Moinester	1995
S. Pepin <i>et al.</i>	1996
B. A. Gelman and S. Nussinov	2003
J. Vijande <i>et al.</i>	2003
D. Janc and M. Rosina	2004
F. Navarra <i>et al.</i>	2007
J. Vijande <i>et al.</i>	2007
D. Ebert <i>et al.</i>	2007
S. H. Lee and S. Yasui	2009
Y. Yang <i>et al.</i>	2009
N. Li <i>et al.</i>	2012
GQ. Feng <i>et al.</i>	2013
SQ. Luo <i>et al.</i>	2017
M. Karliner and J. Rosner	2017
E. J. Eichten and C. Quigg	2017
Z. G. Wang	2017
W. Park <i>et al.</i>	2018
P. Junnarkar <i>et al.</i>	2018
C. Deng <i>et al.</i>	2018
MZ. Liu et al.	2019
L. Maiani <i>et al.</i>	2019
G. Yang <i>et al.</i>	2019
Y. Tan <i>et al.</i>	2020
QF. Lü <i>et al.</i>	2020
E. Braaten <i>et al.</i>	2020
D. Gao <i>et al.</i>	2020
JB. Cheng <i>et al.</i>	2020
S. Noh <i>et al.</i>	2021
R. N. Faustov <i>et al.</i>	2021
Ison Rafs in nar	nor]

[see Refs. in paper]

Two of the notable matches

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

NR quark-quark potential model

[-2.7,-0.6] MeV
 -0.6 MeV corresponds to Bhaduri potential

gives insight into wave function: spatial & color configuration → dominated by DD* component

Janc, Rosina, 2003

Phenomenology model for compact tetraquark [cc]-[ud]
 1+12 MeV

- using measured Ξ_{cc} mass to calibrate cc binding $(\delta m = 7 \pm 12 \text{ MeV} \rightarrow 1 \pm 12 \text{ MeV})$ Karliner, Rosner, 2017

Contribution	Value (MeV)
$2m_c^b$	3421.0
$2m_a^b$	726.0
$a_{cc}/(m_{c}^{b})^{2}$	14.2
$-3a/(m_{q}^{b})^{2}$	-150.0
cc binding	-129.0
Total	3882.2 ± 12

Ivan Polyakov, Syracuse University

Reflections on measured mass, 2

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

has the best precision wrt threshold of all exotics

- Using known D⁰ and D*+ mass can derive

which is better than precision for $\Lambda_c(0.14 \text{ MeV})$, $\Sigma_c(0.14 \text{ MeV})$, $\Sigma_c(0.14 \text{ MeV})$, $\Xi_{cc}^{++}(0.4 \text{ MeV})$ and $\eta_c(0.4 \text{ MeV})$ \rightarrow new input to tune the models

Future prospects for T_{cc}⁺

- Analysis of the $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$ Dalitz-plot analysis to confirm J^P=1⁺ spin assignment and probe for isovector component
- Dedicated measurement on D^oD^oX and D^oD⁺X relative yields to probe iso-spin violation
- Production cross-section and multiplicity / momentum spectra

- Inclusion of $D^0 \rightarrow K\pi\pi\pi$ can give ~50% gain in statistics
- Data of Run3 (x5 gain in statistics, possibly x2 in efficiency) will be especially important

Production estimation

 One can estimate yields wrt χ_{c1}(3872) using D⁰D⁰ and D⁰D⁰
 spectra:

$$\frac{N(T_{cc}^{+} \rightarrow D^{0}D^{0}\pi^{+})}{N(\chi_{c1}(3872) \rightarrow D^{0}\overline{D}^{0}\pi^{0})} \sim 1/20$$

In future with better understanding of $\chi_{c1}(3872) \rightarrow D^0 \overline{D}{}^0 X$ shape a dedicated measurement can be done

 Interesting to determine σ(T_{cc}⁺)/σ(Ξ_{cc}⁺⁺), either closer to σ(Λ_c⁺)/σ(D) ~ 0.1-0.2 or σ(Λ_h⁰)/σ(B) ~ 1/2 (in pp at 13 TeV) or less?

will be limited by knowledge of Br $(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K\pi\pi) \sim 5-20\%$, Br $(\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}) \sim 1.3-4\%$, Br $(\Xi_{c}^{+} \rightarrow pK\pi) \sim (6.2\pm3.0)\times10^{-3}$

Other doubly-heavy states

The T_{cc} below DD* threshold supports predictions for stable T_{bb}

From naive phenomenology (HQS-like) estimates one can expect that

- [cc][sq] and [cc][sq] are above corresponding thresholds.
- [cc][ud] \overline{q} can decay to Ξ_{cc} + hadrons

Upgrade and Future searches for T_{bb/c}

Cons

see talk by Steve Blusk [the Tcc mini-workshop]

- O(2-20) supression with every $c \rightarrow b$ substitution compare with $\sigma(\Xi_{cc}) : \sigma(\Xi_{bc}) : \sigma(\Xi_{bb}) \sim 1 : 0.4 : 0.015$ at 14TeV in pp
- Br(b → c + $\pi/\mu/X$) are 0.1-1%

Zhang, Wu, Zhong, Yu, Fang, 2011

Pros

- x5 gain in integrated luminosty in Run3 (2022-2024)
- gain in trigger and reconstruction efficiencies (x2?) from Upgraded LHCb
- larger trigger efficiency for final states with high- p_{T} muon
- Comparing to ~150 events of $T_{cc} \rightarrow D^0 D^0 \pi^+$ one can expect in Run3
 - long-lived T_{bc} : $T_{bc} \rightarrow D^0 D^+ \pi^-$, $\overline{B}{}^0 K^- \pi^+$, $D^0 D^+ \mu \nu$, $\Xi_{cc}{}^+ \overline{p}$, $T_{cc}{}^+ \pi^- \sim O(1-10)$
 - promptly-decaying $T_{bc} : T_{bc} \rightarrow B^-D^+$, $\overline{B}{}^0D^0 \sim O(10)$
 - $T_{bb} \rightarrow BD + X \sim O(0.01)$

```
- ...
```

- Real chances to find T_{bc}
 - especially if combining several modes
 - can further gain from using partially reconstructed semi-leptonic $B/T_{_{bc}}$ decays not much hope for $T_{_{bb}}$ yet

Hadron physics meets Nuclear

- In hadron spectroscopy advances of the theory is limited by the quark configurations to consider _____
 - conventional hadrons: q_1q_2 and $q_1q_2q_3$
 - exotic hadrons: ccq_1q_2 and $ccq_1q_2q_3 \rightarrow$
 - problems with interpretation in most cases (except for the T_{cc}⁺!)
 - In general presence of heavy quark helps (m_c~1.5 GeV, m_b~5 GeV while Λ_{QCD}~0.3 GeV)
- In nuclear physics systems with only light quarks are usually considered

 (a) Up
 (b) Strange

- where non-perturbative regime is at its maximum

 Hyper-nuclei with Λ are explored since 50's giving valuable insight into nuclei physics

 Inclusion on b/c-quark will simplify the system and bring such a unique tool to new level

Ivan Polyakov, Syracuse University

Gal, Hungerford, Millener, 2016

TABLE I Experimental Λ separation energies, B_{Λ} , of light hypernuclei from emulsion studies. These are taken from a compilation (Davis and Pniewski, 1986) of results from (Cantwell *et al.*, 1974; Jurič *et al.*, 1973), omitting ${}^{15}_{\Lambda}$ N (Davis, 1991). A reanalysis for ${}^{12}_{\Lambda}$ C (Dłuzewski *et al.*, 1988) gives 10.80(18) MeV.

Hypernucleus	Number of events	$B_{\Lambda} \pm \Delta B_{\Lambda}$ (MeV)
³ _A H	204	0.13 ± 0.05
$^{4}_{\Lambda}H$	155	2.04 ± 0.04
⁴ _A He	279	2.39 ± 0.03
⁵ _A He	1784	3.12 ± 0.02
⁶ _A He	31	4.18 ± 0.10
7 He	16	not averaged
7 Li	226	5.58 ± 0.03
⁷ _A Be	35	5.16 ± 0.08
⁸ _A He	6	7.16 ± 0.70
⁸ _A Li	787	6.80 ± 0.03
⁸ _A Be	68	6.84 ± 0.05
⁹ _A Li	8	8.50 ± 0.12
⁹ _A Be	222	6.71 ± 0.04
⁹ _A B	4	8.29 ± 0.18
¹⁰ _A Be	3	9.11 ± 0.22
¹⁰ _A B	10	8.89 ± 0.12
11 B	73	10.24 ± 0.05
12 AB	87	11.37 ± 0.06
¹² AC	6	10.76 ± 0.19
¹³ _A C	6	11.69 ± 0.12
14 C	3	12.17 ± 0.33

Hyper-nuclei at LHC

ALICE, 1506.07499

- ALICE observed hypertriton in both PbPb, pPb and pp collisions
 ALICE, 2107.10627
- Searches for AA di-baryon (uuddss) are ongoing, – no success yet
 ALICE, 1905.07209
- The [uuddcc] has more chances to exist due to ~100 MeV stronger binding between cc quarks *
- LHCb has x50-100 larger statistics of pp-collisions than ALICE,
 - perfectly suited for reconstructing c-hadron decays (τ~O(ps)),
 - cc produced in ~5% of pp collisions LHCb, 1205.0975

possible modes for searches:

- H_c [cuduud] $\rightarrow ppK^-\pi^+ / p\Lambda_c$
- H_{cc} [ccuudd] $\rightarrow \Lambda_c p K^- \pi^+ / \Lambda_c \Lambda_c$
- and also H_s, H_b, …

Ivan Polyakov, Syracuse University

* M. Karliner

The TORCH sub-detector

- Time-of-flight detector prepared for LHCb Upgrade II (and in some part in Ib?)
- Aiming to provide p/K/π identification in 2-10 GeV/c range where present RICH detectors are not efficient
 N. Harnew et al., arXiv:1810.06658

 Will also provide identification for deuteron and triton up to 25-30 GeV/c, thus enriching potential for hyper-nuclei searches

Conclusions

- A novel class of hadrons observed [ccud], just below D⁰D*+ threshold, consistent with predicted T_{cc}+ with J^P=1+
- $D^0D^0\pi^+$, $D^0\pi^+$, D^0D^0 , D^0D^+ spectra described
- Intriguing production properties

arXiv:2109.01038 arXiv:2109.01056

 Run3 (2022-2024) and Upgraded LHCb will bring a lot of possibilities for further studies - T_{cc.} T_{bc}, H_c, H_{cc}, ...

Predictions for ccud mass

- More recent calculations (including Lattice Q all agree that it should be true for [bb][ud] u with QQ forming compact color anti-triplet and resulting binding of ~150MeV
- However not clear for [bc][ud] and [cc][ud]
- Predictions for a ground ccud state (isoscalar with $J^{P}=1^{+}$) vary within ±250MeV wrt to D⁰D*+ threshold
- Review few selected in the following Neither full, nor objective, and oversimplified \rightarrow see Ref. List in papers for an overview

Ivan Polyakov, Syracuse University

CD)	$\delta m \equiv$	$\equiv m_{\mathrm{T_{cc}^+}} - (m_{\mathrm{D^{*+}}} + m$	D^0
		J. Carlson <i>et al.</i>	1987
		B. Silvestre-Brac and C. Semay	1993
	н	C. Semay and B. Silvestre-Brac	1994
		M. A. Moinester	1995
		S. Pepin <i>et al.</i>	1996
		B. A. Gelman and S. Nussinov	2003
		J. Vijande <i>et al.</i>	2003
		D. Janc and M. Rosina	2004
	⊢	F. Navarra <i>et al.</i>	2007
	•	J. Vijande <i>et al.</i>	2007
		D. Ebert <i>et al.</i>	2007
	•	S. H. Lee and S. Yasui	2009
<u> </u>		Y. Yang et al.	2009
	<u>н</u>	N. Li <i>et al.</i>	2012
<u> </u>		GQ. Feng <i>et al.</i>	2013
		SQ. Luo <i>et al.</i>	2017
		M. Karliner and J. Rosner	2017
	•	E. J. Eichten and C. Quigg	2017
	⊢	Z. G. Wang	2017
	—	W. Park et al.	2018
		P. Junnarkar <i>et al.</i>	2018
•		C. Deng <i>et al.</i>	2018
	H	MZ. Liu <i>et al.</i>	2019
н		L. Maiani <i>et al.</i>	2019
		G. Yang et al.	2019
•		Y. Tan <i>et al.</i>	2020
		QF. Lü <i>et al.</i>	2020
	iei	E. Braaten <i>et al.</i>	2020
	<u> </u>	D. Gao <i>et al.</i>	2020
	•	JB. Cheng <i>et al.</i>	2020
	•	S. Noh <i>et al.</i>	2021
	•	R. N. Faustov <i>et al.</i>	2021
-300 -200 -10	δm	$[MeV/c^2]$ [see Refs. in paper	oer]

5

J. Calison et al.	1901		
B. Silvestre-Brac and C. Semay	1993		
C. Semay and B. Silvestre-Brac	1994		
M. A. Moinester	1995		
S. Pepin <i>et al.</i>	1996		
B. A. Gelman and S. Nussinov	2003		
J. Vijande <i>et al.</i>	2003		
D. Janc and M. Rosina	2004		
F. Navarra <i>et al.</i>	2007		
J. Vijande <i>et al.</i>	2007		
D. Ebert <i>et al.</i>	2007		
S. H. Lee and S. Yasui	2009		
Y. Yang <i>et al.</i>	2009		
N. Li <i>et al.</i>	2012		
GQ. Feng <i>et al.</i>	2013		
SQ. Luo <i>et al.</i>	2017		
M. Karliner and J. Rosner	2017		
E. J. Eichten and C. Quigg	2017		
Z. G. Wang	2017		
W. Park <i>et al.</i>	2018		
P. Junnarkar <i>et al.</i>	2018		
C. Deng <i>et al.</i>	2018		
MZ. Liu <i>et al.</i>	2019		
L. Maiani <i>et al.</i>	2019		
G. Yang <i>et al.</i>	2019		
Y. Tan <i>et al.</i>	2020		
QF. Lü <i>et al.</i>	2020		
E. Braaten <i>et al.</i>	2020		
D. Gao <i>et al.</i>	2020		
JB. Cheng <i>et al.</i>	2020		
S. Noh <i>et al.</i>	2021		
R. N. Faustov <i>et al.</i>	2021		
[see Refs. in paper]			

Selected theory approaches

- Few selected approaches discussed in following
 - Phenomenological approach for compact hadrons
 - Non-relativistic quark constituent model
 - Molecula object
 - Hydrogen bond in QCD
 - Lattice QCD
 - ... others

Neither full, nor objective, and oversimplified \rightarrow see Ref. List in papers for an overview

Phenomenology approach for compact hadrons

- Extracting effective quark masses and binding or hyperfine interaction terms from measured hadron masses and assuming cc are in anti-triplet color configuration
 - 1a. Heavy Quark Symmetry • $m(ccud) = m(\Xi_{cc}) + 315 \text{ MeV} \sim m(\Xi_{cc}) + [m(\Lambda_c)-m(D^0)] + kinematic correction$ $\rightarrow \delta m = +102 \text{ MeV} \qquad \delta m = +65 \text{ MeV} \qquad (~ 3 \text{ MeV})$ using measured $\Xi_{cc} mass$
 - Ib. More detailed calculation with estimation of uncertainties
 - \rightarrow **\deltam = 72±11 MeV** Braaten, He, Mohapatra, 2020

Ic. Different treatment of meson/baryon quark masses & splitting parameters

Contribution	Value (MeV)
$2m_c^b$	3421.0
$2m_q^b$	726.0
$a_{cc}/(m_c^b)^2$	14.2
$-3a/(m_{q}^{b})^{2}$	-150.0
cc binding	-129.0
Total	3882.2 ± 12

$$\delta m = 7 \pm 12 \text{ MeV}$$

$$using measured$$

$$\Xi_{cc} mass$$

$$\delta m = 1 \pm 12 \text{ MeV}$$
Karliner, Rosner, 2017

Non-relativistic quark constituent model

 Solve Schrodinger equation considering interaction between every pair of quarks

$$H = \sum_{i} \left(m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - \frac{3}{16} \sum_{i < j} \tilde{\lambda}_i \tilde{\lambda}_j v_{ij}(r_{ij})$$

 Different variants for exact potential are used (modifications of Cornell potential)

Molecula object

- Consider one-boson-exchange between DD* forming a molecula
 - get (much stonger) binding depending on particular parameters (mainly cut-off value Λ~1GeV (0.2fm))

 δm = [-332;-185] MeV
 Pepin, Stancu, Genovese, Richard, 1996

 = [-42;0.3] MeV
 Li, Sun, Liu, Zhu, 2012

 = [-18;+1] MeV
 Wu,Liu, Wu, Valderrama, Xie, Geng, 2019

- 2&3. Adding meson-exchange (π, ρ, Κ, σ, η, ...) terms to the potential in NR model (quark-quark interaction)
 - results vary a lot, indicate 100-200 MeV increase in binding wrt no-OBE,

(though do not agree with other calculations w/o OBE) Ivan Polyakov, Syracuse University d

Hydrogen bond of QCD

 Consider interaction between two D-mesons by solving Schrodinger equation for light quarks (q) given fixed distance between the heavy ones (Q)
 → get effective interaction between QQ

→ get O(MeV) binding between D mesons: and thus $\delta m \sim -135 \text{ MeV}$ Maiani, Polosa, Riquer, 2019

is it analogous to quark consituent model with OGE? should it be re-considered for DD* interaction?

Lattice QCD

Summary of Results

- A narrow peak in $D^0D^0\pi^+$ below D^0D^{*+} threshold is observed with S>20 σ
- Naive BW parameters:

$$\begin{split} \delta m_{\rm BW} &= -273 \pm 61 \pm 5^{+11}_{-14} \, \text{keV}/c^2 \,, \\ \Gamma_{\rm BW} &= 410 \pm 165 \pm 43^{+18}_{-38} \, \text{keV} \,, \end{split}$$

• Consistent with [ccud] isoscalar tetraquark T_{cc}^+ with $J^P = 1^+$ for which

$$\delta' m_0 = -359 \pm 40^{+9}_{-6} \, \text{keV}/c^2$$

is determined using dedicated model

- A lower limit is set on $T_{cc}^+ \rightarrow DD^*$ coupling: |g| > 5.1 (4.3) GeV at 90 (95) % CL
- Threshold structures observed in D⁰D⁰ and D⁰D⁺ are found to be consistent with $T_{cc}^{+} \rightarrow D^0 D^{0/+} \pi^{+/0} / \gamma$ decays via off-shell D* mesons
- Matching to low-energy DD* scattering amplitude we get
- Pole position:

$$\delta' m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

2D LEGO Plots

Resolution model

Sum of two gaussian functions,

where widths and relative fractions are determined from simulation:

 $\sigma_1 = 263 \text{ keV} \times 1.05$ $\sigma_2 = 2.413 \times \sigma_1$ $f_1 = 0.778$

a 1.05 correction motivated by data-simulation comparison in various decay channels

• For systematics :

- correction factor varied within 1.0-1.1
- many alternative parametrisations tried: Apolonios, CrystalBall, Student-t, Jphnson-U, Novosibirsk

Scaling in unitarized model

 For large values of |g| a scaling of overall shape is in place and visible width depends only on mass and Γ(D*+)

Consistency of Naive and Advanced

Generate 25k pseudoexperiments using advanced BW model, fit them with naive BW model.

Get $\delta'm_{_{BW}}$ and $\Gamma_{_{BW}}$ consistent with values obtained from data

 $Pseudoexperiments/(10 \, {\rm keV}/c^2)$

 Generate 4k pseudoexperiments using naive BW model, fit them with advanced BW model.

Get $\delta'm_0$ consistent with values obtained from data

Parameter		Pseudoexperiments		Data
		mean	RMS	Data
$\delta m_{ m BW}$	$[\text{keV}/c^2]$	-301	50	-273 ± 61
$\Gamma_{\rm BW}$	[keV]	222	121	410 ± 165
$\delta m_{ m U}$	$[\text{keV}/c^2]$	-378	46	-359 ± 40

Low-energy scattering approximation

Relation between unitarized amplitude and low-energy expansion

$$\mathcal{A}_{\rm NR}^{-1} = \frac{1}{a} + r\frac{k^2}{2} - ik + \mathcal{O}(k^4) ,$$

$$\frac{2}{|g|^2} \mathcal{A}_{\rm U}^{-1} = -\left[\xi(s) - \xi(m_{\rm U}^2)\right] + 2\frac{m_{\rm U}^2 - s}{|g|^2} - i\varrho_{\rm tot}(s)$$

Proportionality factor

$$w = \frac{24\pi}{m_{\mathrm{D}^{*+}} + m_{\mathrm{D}^0}} \frac{1}{c_1}$$

Inverse scattering length

$$\frac{1}{a} = -\frac{1}{w} \Big\{ \left[\xi(s_{\rm th}) - \xi(m_{\rm U}^2) \right] + i \varrho_{\rm tot}(s_{\rm th}) \Big\}$$

Slope of linear term

$$r=-\frac{1}{w}\frac{16}{\left|g\right|^{2}}$$

Extended Data Fig. 9: Comparison of the \mathcal{A}_U and \mathcal{A}_{NR} amplitudes. The real and imaginary parts of the inverse \mathcal{A}_U and \mathcal{A}_{NR} amplitudes. The yellow band correspond to the pole position and vertical dashed lines show the $D^{*+}D^0$ and $D^{*0}D^+$ mass thresholds.

Analytic continuation

 To study poles analytic continuation of amplitude and hence complex width and phase-space functions onto complex plane is required

$$\Sigma(s) = \frac{s}{2\pi} \int_{s_{\rm th}^*}^{+\infty} \frac{\varrho_{\rm tot}(s')}{s'(s'-s)} \, ds' - \xi\left(m_{\rm U}^2\right) \,,$$
$$\frac{1}{\mathcal{A}_{\rm U}^{II}(s)} = m_{\rm U}^2 - s - |g|^2 \,\Sigma(s) + i \, |g|^2 \, \varrho_{\rm tot}(s)$$

For ρ functors

$$\int_{\mathcal{D}} |\mathfrak{M}|^2 d\Phi_3 = \frac{1}{2\pi(8\pi)^2 s} \int_{(m_2+m_3)^2}^{(\sqrt{s}-m_1)^2} ds_{23} \int_{s_{12}^-(s,s_{23})}^{s_{12}^+(s,s_{23})} |\mathfrak{M}|^2 ds_{12}$$
$$s_{12}^{\pm}(s,s_{23}) = m_1^2 + m_2^2 - \frac{(s_{23}-s+m_1^2)(s_{23}+m^2+m_3^2)}{2s_{23}}$$
$$\pm \frac{\lambda^{1/2}(s_{23},s,m_1^2)\lambda^{1/2}(s_{23},m_2^2,m_3^2)}{2s_{23}}$$

ccsq tetraquarks

Considering that mass of [cc] system should fall in between of c-quark and b-quark masses we may expect that mass of tetraquark states with s-quark scales similarly to that in D- and B-hadrons. And therefore one can make some very naive estimation for masses of $[cc\bar{s}q]$ and $[cc\bar{s}\bar{s}]$ with respect to threshold. We may suppose that substitution of one light quark in $[cc\bar{u}d]$ to \bar{s} will increase its mass by either

$$m_{\Xi_c^{+(0)}} - m_{\Lambda_c^+} = 181(184) \,\text{MeV}/c^2 \text{ or}$$
 (U.1)

$$m_{\Xi_{\rm b}^{0(-)}} - m_{\Lambda_{\rm b}^{0}} = 172(177) \,\mathrm{MeV}/c^2$$
 (U.2)

while the corresponding threshold will be increased by either

$$m_{\rm D_s^+} - m_{\rm D^+(D^0)} = 99(104) \,\mathrm{MeV}/c^2 \,\mathrm{or}$$
 (U.3)

$$m_{\rm B_s^0} - m_{\rm B^0(B^+)} = 87(88) \,\mathrm{MeV}/c^2$$
. (U.4)

Thus, the mass of $[cc\bar{s}q]$ state will be $80 - 89 \text{ MeV}/c^2$ above $D_s^+D^*$ threshold and therefore existence of a narrow state is unlikely.

Similarly we may suppose that substitution of $[\overline{ud}]$ to $[\overline{ss}]$ will increase its mass by either

$$m_{\Omega_c} - m_{\Lambda_c^+} = 409 \,\text{MeV}/c^2 \text{ or}$$
 (U.5)

$$m_{\Omega_c} - m_{\Lambda_c^+} = 427 \,\mathrm{MeV}/c^2 \tag{U.6}$$

while the corresponding threshold will be increased by either

$$2 \times m_{\rm D_s^+} - m_{\rm D^+} - m_{\rm D^0} = 202 \,{\rm MeV}/c^2$$
 or (U.7)

$$2 \times m_{\rm B_s^0} - m_{\rm B^0} - m_{\rm B^+} = 175 \,{\rm MeV}/c^2$$
 (U.8)

Production vs track multuplicity

- Can expect that T_{cc}^{+} has some propoerties similar to $\chi_{c1}(3872)$
- For $\chi_{c1}(3872)$ production a suppression wrt $\psi(2S)$ was observed at high track multiplicities
- Explained in comover model where $\chi_{c1}(3872)$ is broken by closely flying pions/gluons

Offshell D*⁺

 Integrate unitarized model over D⁰D⁰π⁺ and D⁰D⁰ masses
 → obtain D⁰π⁺ shape

Perfect agreement confirms • $T_{cc} \rightarrow DD^*$ decaying via off-shell D* • and the J^P=1⁺ assignement for T_{cc}

