FCC Accelerator Timeline and Goals

Tor Raubenheimer ABP Day, December 2, 2021

Goals for the FCC

The FCC CDR was developed for the 2020 European Strategy (ESPP)

Now push the design further with detailed placement options to a pre-TDR level for the next ESPP in 2026.

Focus on the FCC-ee to address Z, W, Higgs, and t-tbar before an FCC-hh

FCC-ee Design Study Contacts

FCC FS overall timeline and main deliverables

main deliverables and timelines of the FCC Feasibility Study		2021			2022			20		23		2024			2025				
				Q4	Q1			Q4	Q1			Q4	Q1			Q4	Q1 Q		24
technical design work and R&D in all relevant areas																			
progress review on key technology R&D programs																			
development and documentation of implementation scenario																			
design update for preferred implementation variant																			
communications plan development and implementation																			
development of funding models and concepts																	uŗ	date	
development of project organisation and operation models																	uŗ	date	
CDR cost update with external review																			
general coherence review (mid-term)																			
detailed design for Feasibility Study Report																			
environmental evaluation process and impact study with host states					р	repar	ratio	n											
high-risk areas site investigations					р	repar	ratio	n											
project cost update with external review																			
Feasibility Study Report																			

- ☐ Pre-decision on placement of the ring (geology, surface areas, etc.): mid-2022
- ☐ High-risk area site investigations for selected placement: mid-2023 to mid-2025
- ☐ Design update for preferred placement scenario: mid-2023
- ☐ General coherence review across all work packages: mid-2023 (FS mid-term review)
- □ Cost reviews with external expert review committee: 2023 and 2025

Accelerator Development Goals and Timeline

- Self-consistent Baseline configuration for Feasibility Study by end of 2025
- Support mid-term and final costing exercises in June 2023 and December 2025
 - Complete beam optics aligned to the present tunnel placement and initial component specification by January 2023 to allow cost development through May 2023 for midterm FCC review in June 2023
 - Optics specifications with correction elements, RF, collimation and injection systems
 - Beam dynamics calculations to include initial studies: tuning and correction; dynamic aperture with errors; beam-beam with errors; collective effects.
 - FCCee Injector and Booster optics and layouts completed with tradeoff studies documented
 - FCChh optics layout in consistent layout
 - Technology R&D specification with milestones
- Iterate to support the Feasibility Study costing exercise from January 2025 through
 December 2025

FCC Accelerator Status

Placement updated with slightly smaller footprint (91 km) and 8 accesses Updating main ring optics for 4 IPs with new placement for 4 energies Selected baseline high-level parameters (mostly)

Working on MDI, RF layout, collimation, and injection/extraction
Many outstanding physics and tuning questions
Developing Booster and Injector configurations
Working to ensure compatibility with FCC-hh
Technical R&D program is beginning to prioritize tasks
Energy calibration and polarization studies beginning
Need to develop tools and simulations

Placement Studies (2 / 2)

Looked in detail at placement options.

Access points are challenging to find

→ layout with slightly smaller (91 km)
circumference and 8 access points

2 main optics configurations: Z, W and Zh, ttbar

Parameters

į	Beam energy	[GeV]	45.6	80	120	182.5			
Ì	Layout			PA31	-1.0				
	# of IPs			4					
_	Circumference	[km]	91.17	4117	91.174107				
	Bending radius of arc dipole	[km]		9.9	37				
	Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0			
	SR power / beam	[MW]		50	Ó				
	Beam current	[mA]	1280	135	26.7	5.00			
	Bunches / beam		9600	880	248	36			
	Bunch population	$[10^{11}]$	2.53	2.91	2.04	2.64			
	Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49			
	Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98			
	Arc cell		Long !	90/90	90/90				
	Momentum compaction α_p	$[10^{-6}]$	28	.5	7.33				
	Arc sextupole families	773.1	7	5	146				
	$\beta_{x/y}^*$	[mm]	150 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6			
	Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595			
	Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.130	0.069 / 0.154	0.103 / 0.185	0.157 / 0.229			
	Bunch length (SR/BS) σ_z	[mm]	4.37 / 14.5	3.55 / 8.01	3.34 / 6.00	2.02 / 2.95			
	RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	4.0 / 7.25			
	Harmonic number for 400 MHz			1210	648				
	RF freuquency (400 MHz)	MHz	399.99	94581	399.9	94627			
	Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826			
	Long. damping time	[turns]	1168	217	64.5	18.5			
	RF acceptance	[%]	1.6	3.4	1.9	3.1			
	Energy acceptance (DA)	[%]	±1.3	±1.3	±1.7	-2.8 + 2.5			
	Beam-beam ξ_x/ξ_y^a	12.00.2020	0.0040 / 0.152	0.011 / 0.125	0.014 / 0.131	0.096 / 0.151			
	Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	189	19.4	7.26	1.33			
	Lifetime $(q + BS)$	[sec]	-	e e e e e e e e e e e e e e e e e e e	1065	2405			
	Lifetime (lum)	[sec]	1089	1070	596	701			

Subsystem Definitions

Along with the main ring placement, major subsystems are being defined and layouts started:

RF, injection/extraction, beam collimation, polarization meas/control,

Booster, Injector, Transfer lines

Need iterations on all of these by June 2022 to understand the preliminary civil and infrastructure requirements

Accelerator Baseline Philosophy and Options

- Develop accelerator 'baseline' model using relatively conservative accelerator physics and technology choices wherever possible
- Cross-reference technological/physics choices to operating facilities where possible and identify all areas where baseline requires extrapolation
- Start accelerator modeling with established simulation/modeling tools but develop optimized tools for the completion of the Feasibility Study → code workshop, Winter/Spring 2022
- In parallel, develop a list of Alternate options that could potentially lead to a significant improvement in performance or cost
 - Develop the Alternate options in parallel with main project and move them into the baseline
 as the options mature with an established down select process → schematic
 - Examples might be HTS arc quadrupole/sextupole magnets, the SPS as a pre-booster, positron target using crystal channeling, advanced cooling tower design, etc.

Suggested FCC-ee Design Milestones and Deliverables

Major milestones/deliverables:

- FCCee Parameter update October, 2021
- Specification of RF Baseline configuration, October, 2021
- Collider arc cell and main optics configuration, November, 2021

Deliverable, January 2022

- Tuning and Simulation tool workshop, Winter, 2022 → broaden to physics modeling
- Tuning, Diagnostic, Tolerance and stability spec → requirements, June 2022
- Collimation system specification, June 2022
- Infrastructure requirements, June 2022
- Tunnel cross-section, June 2022
- Energy calibration update, June 2022
- Civil infrastructure requirements, September 2022 → Major deliverable
- Document baseline for costing exercise, December 2022 → Major deliverable
- Begin iteration of parameters, June → December, 2023
- Update Baseline calculations and specifications using new tools over next 1.5 years
- Document Baseline for Feasibility Study costing exercise, June 2025
- Start Feasibility Study baseline documentation, June 2025

Major Deliverable

Suggested FCC-hh, Tech R&D, and FCC-ee Injector/Booster Design Milestones & Deliverables

SLAC

Major milestones FCChh and FCCee Injector systems:

- FCC-hh parameter update December, 2021
- FCC-hh specification of RF Baseline configuration, December, 2021

- FCC-hh civil infrastructure requirements, September 2022
- FCC-hh injection/extraction optics, December, 2022
- Prioritize technical R&D items, March, 2022 → Reviewed regularly → list of deliverables
- Technical R&D having many parallel programs with established milestones
- FCCee Booster parameter update, December, 2021
- FCCee Booster optics update with main ring injection, June 2022
- FCCee Tunnel cross-section, June 2022 (with main ring)
- FCCee Pre-Injector update, June 2022
- FCCee Booster → Main ring injection, September 2022
- Document baseline for costing exercise, December 2022
- Parameters Iteration, June 2023
- Start Feasibility Study baseline documentation, June 2025

Agenda

10:35

08:45 → 10:55 FCC ABP Day Session 1 Convener: Edda Gschwendtner (CERN) 08:45 Welcome and Goals of the FCC ABP Day Speakers: Yannis Papaphilippou (CERN), Frank Zimmermann (CERN) 08:55 FCC Accelerator Pillar - Plan and milestones Speaker: Tor Raubenheimer (SLAC National Accelerator Laboratory (US)) 09:15 ee Collider Design - Open points and where help is needed Speaker: Katsunobu Oide (High Energy Accelerator Research Organization (JP)) Optics_openpoints_... 09:35 Booster Design - Open points and where help is needed Speakers: Antoine Chance (CEA Irfu), Barbara Dalena (CEA-Irfu & Université Paris-Saclay 2021_11_29_Booste... 2021_11_29_Booste... 09:55 FCC-hh design - Open points and where help is needed Speaker: Massimo Giovannozzi (CERN) 10:15 Collimation for ee and hh, Open points & where help is needed Speakers: Roderik Bruce (CERN), Andrey Abramov (CERN) FCC_collimation_FC...

11:15 → 13:15 FCC ABP Day Session 2

Convener: Yannis Papaphilippou (CERN)

11:15 MDI - Open points and where help is needed

Speaker: Manuela Boscolo (INFN e Laboratori Nazionali di Frascati (IT))

11:35 Pre-injector complex - Open points and where help is needed

Speaker: Paolo Craievich

11:55 Energy calibration - Open points and where help is needed

Speaker: Alain Blondel (Universite de Geneve (CH))

12:15 Code development

Speakers: Tatiana Pieloni (EPF Lausanne), Felix Simon Carlier (EPFL)

12:35 Other open points

Speaker: Frank Zimmermann (CERN)

12:55 FCC FS - Motivations, goals, timeline, organization, etc.

Speaker: Michael Benedikt (CERN)

Speakers: Emanuela Carideo (Sapienza Universita e INFN, Roma I (IT)), Mauro Migliorati (Sapienza Universita e INFN, Roma I (IT))

Summary

- FCC-ee will address the Higgs/EW physics that has been endorsed worldwide and is very a strong candidate as the next large accelerator in particle physics
- The accelerator will operate in a new regime with very high luminosity at high energy (a merger of the B-factories and LEP) with new physics challenges
- Detailed studies are beginning to understand the placement, infrastructure, and civil engineering as well as the beam physics and accelerator components
- Very exciting time with lots to do to define this new collider!

