The Standard Model of Particle Physics, Lecture 3

Sayantan Sharma

The Institute of Mathematical Sciences

10th November 2021

Interactions

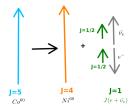
• After having studied how to understand the hadron spectrum from the symmetry properties of Standard Model we now focus on the types of interactions.

$$\begin{split} \pi^- &\to \mu^- + \bar{\nu_{\mu}} \quad , \quad \tau = 2.6 \times 10^{-8} \mathrm{sec} \\ \pi^0 &\to \gamma \gamma \quad , \quad \tau \sim 10^{-16} \mathrm{sec} \\ \pi N &\to \pi N \quad , \quad \tau \sim 10^{-23} \mathrm{sec} \end{split}$$

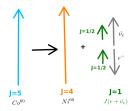
Interactions

• After having studied how to understand the hadron spectrum from the symmetry properties of Standard Model we now focus on the types of interactions.

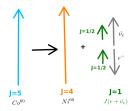
$$\begin{split} \pi^- &\to \mu^- + \bar{\nu_{\mu}} \quad , \quad \tau = 2.6 \times 10^{-8} \mathrm{sec} \\ \pi^0 &\to \gamma \gamma \quad , \quad \tau \sim 10^{-16} \mathrm{sec} \\ \pi N &\to \pi N \quad , \quad \tau \sim 10^{-23} \mathrm{sec} \end{split}$$


• We can categorize into weak, electromagnetic and strong interactions depending on the time scale of interactions.

Interactions

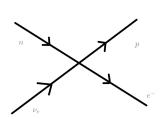

• After having studied how to understand the hadron spectrum from the symmetry properties of Standard Model we now focus on the types of interactions.

$$\begin{split} \pi^- &\to \mu^- + \bar{\nu_{\mu}} \quad , \quad \tau = 2.6 \times 10^{-8} \mathrm{sec} \\ \pi^0 &\to \gamma \gamma \quad , \quad \tau \sim 10^{-16} \mathrm{sec} \\ \pi N &\to \pi N \quad , \quad \tau \sim 10^{-23} \mathrm{sec} \end{split}$$


- We can categorize into weak, electromagnetic and strong interactions depending on the time scale of interactions.
- The beta decay $n \rightarrow p + e + \bar{\nu_e}$ is a weak decay. If there were no weak decays then neutron would be as stable as a proton $(10^{30} \text{ yrs})!$

• It was observed by Madam Wu that weak decays violate parity. The electrons in the decay of $Co^{60} \rightarrow Ni^{60} + e + \bar{\nu_e}$ are emitted preferentially along a direction opposite to the *Co*-spin.

- It was observed by Madam Wu that weak decays violate parity. The electrons in the decay of $Co^{60} \rightarrow Ni^{60} + e + \bar{\nu_e}$ are emitted preferentially along a direction opposite to the *Co*-spin.
- Evidence collected from many experiments showed that only ν_L exist and there is no corresponding mirror image state ν_R .



- It was observed by Madam Wu that weak decays violate parity. The electrons in the decay of $Co^{60} \rightarrow Ni^{60} + e + \bar{\nu_e}$ are emitted preferentially along a direction opposite to the *Co*-spin.
- Evidence collected from many experiments showed that only ν_L exist and there is no corresponding mirror image state ν_R .
- In fact from experimental observations of weak decays reveal [Lee & Yang]

 $\Gamma \left(\pi^+ \to \mu^+ + \nu_{\mu,L} \right) \neq \Gamma \left(\pi^+ \to \mu^+ + \nu_{\mu,R} \right)$ Parity Violation $\Gamma \left(\pi^+ \to \mu^+ + \nu_{\mu,L} \right) \neq \Gamma \left(\pi^- \to \mu^- + \nu_{\mu,L}^- \right)$ C Violation $\mathbb{E} \left\{ \mathbb{E} \left\{ \pi^+ \to \mu^+ + \nu_{\mu,L} \right\} \right\} = \mathbb{E} \left\{ \mathbb{E} \left\{ \pi^+ \to \mu^+ + \nu_{\mu,L} \right\} \right\}$

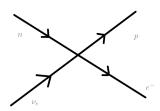
Weak decays: Maximal parity violation

• It is difficult to estimate the helicity of neutrinos emitted from beta decay experiments $n \rightarrow p + e + \bar{\nu_e}$. Experiments by Goldhaber, Grodzins and Sunyar measured the spin and momentum of the recoil nucleus and inferred the helicity of neutrinos.

 $n \rightarrow p + e + \bar{\nu_e}$

amplitude~ $(hadron current)^{\mu} \bar{e}_L \gamma_{\mu} \nu_L$ $\bar{e}_L \gamma_\mu \nu_L = \frac{1}{2} \bar{e} \gamma_\mu (1 - \gamma_5) \nu$

Sayantan Sharma


IV ALICE India School on QGP 2021

Slide 4 of 10

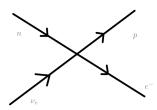
Weak decays: Maximal parity violation

- It is difficult to estimate the helicity of neutrinos emitted from beta decay experiments $n \rightarrow p + e + \bar{\nu_e}$. Experiments by Goldhaber, Grodzins and Sunyar measured the spin and momentum of the recoil nucleus and inferred the helicity of neutrinos.
- Experiments revealed that neutrinos are always left handed! → maximum parity violation!

 $n \rightarrow p + e + \bar{\nu_e}$

amplitude~ $(\text{hadron current})^{\mu} \bar{e}_L \gamma_{\mu} \nu_L$ $\bar{e}_L \gamma_{\mu} \nu_L = \frac{1}{2} \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu$

Sayantan Sharma IV ALICE-India School on QGP, 2021


Slide 4 of 10

Weak decays: Maximal parity violation

- It is difficult to estimate the helicity of neutrinos emitted from beta decay experiments n → p + e + ve. Experiments by Goldhaber, Grodzins and Sunyar measured the spin and momentum of the recoil nucleus and inferred the helicity of neutrinos.
- Experiments revealed that neutrinos are always left handed! → maximum parity violation!

 $n \rightarrow p + e + \bar{\nu_e}$

• $j^{\mu} = \bar{e} \left[C_V \gamma^{\mu} - C_A \gamma^{\mu} \gamma^5 \right] \nu_e$, $C_V = C_A = \frac{1}{2}$.

amplitude~ $(\text{hadron current})^{\mu} \bar{e}_L \gamma_{\mu} \nu_L$ $\bar{e}_L \gamma_{\mu} \nu_L = \frac{1}{2} \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu$

• It was also observed that weak decay $\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu_e}$ is allowed whereas $\mu \rightarrow e\gamma$ is forbidden!

- It was also observed that weak decay $\mu^- \to e^- + \nu_\mu + \bar{\nu_e}$ is allowed whereas $\mu \to e\gamma$ is forbidden!
- This tells us that there is an additive conserved quantum number \rightarrow Lepton number

$$L_e=+1 \ {
m for} \ e^-,
u_e$$
 , $L_e=0 \ {
m for} \ \mu, au,
u_\mu,
u_ au$.

- It was also observed that weak decay $\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu_e}$ is allowed whereas $\mu \rightarrow e\gamma$ is forbidden!
- This tells us that there is an additive conserved quantum number \rightarrow Lepton number

$$L_e=+1 ext{ for } e^-,
u_e$$
 , $L_e=0 ext{ for } \mu, au,
u_\mu,
u_ au$.

• One can therefore construct three families of leptons which forms doublets

$$\begin{pmatrix} \nu_{e,L} \\ e_L \end{pmatrix} , \ \begin{pmatrix} \nu_{\mu,L} \\ \mu_L \end{pmatrix} , \ \begin{pmatrix} \nu_{\tau,L} \\ \tau_L \end{pmatrix} , \ e_R , \ \mu_R , \ \tau_R .$$

Hadronic weak decays

• Hadrons also undergo weak decays to leptons.

 $\pi^-
ightarrow \mu^- + \bar{
u_{\mu}}$, $\Sigma^-
ightarrow n + e^- + \bar{
u_e}$

Hadronic weak decays

• Hadrons also undergo weak decays to leptons.

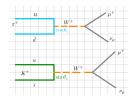
```
\pi^- 
ightarrow \mu^- + \bar{
u_{\mu}} , \Sigma^- 
ightarrow n + e^- + \bar{
u_e}
```

 Furthermore it has been observed that strangeness-changing process are suppressed which involves no change in electric charge → no mixing between d and s weak states
 [Glashow-Iliopoulos-Maiani].

Hadronic weak decays

• Hadrons also undergo weak decays to leptons.

 $\pi^-
ightarrow \mu^- + \bar{
u_{\mu}}$, $\Sigma^-
ightarrow n + e^- + \bar{
u_e}$


- Furthermore it has been observed that strangeness-changing process are suppressed which involves no change in electric charge → no mixing between d and s weak states
 [Glashow-Iliopoulos-Maiani].
- One can analogously write the weak eigenstates of quark families as

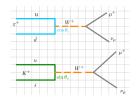
$$\begin{pmatrix} u_L \\ d'_L \end{pmatrix} , \begin{pmatrix} c_L \\ s'_L \end{pmatrix} , \begin{pmatrix} t_L \\ b'_L \end{pmatrix} , u_R, d_R, s_R, c_R, b_R, t_R$$

Cabibbo angles

• It was observed that decays with $\Delta S = \pm 1$ are always suppressed.

$$\frac{m_K^3 f_\pi^2}{m_\pi^3 f_K^2} \left(\frac{m_\pi^2 - m_\mu^2}{m_K^2 - m_\mu^2} \right)^2 \frac{\Gamma(K^+ \to \mu^+ + \nu_\mu)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} \sim 5 \times 10^{-2} \; .$$

IV ALICE-India School on QGP, 2021


Cabibbo angles

• It was observed that decays with $\Delta S = \pm 1$ are always suppressed.

$$\frac{m_K^3 f_\pi^2}{m_\pi^3 f_K^2} \left(\frac{m_\pi^2 - m_\mu^2}{m_K^2 - m_\mu^2} \right)^2 \frac{\Gamma(K^+ \to \mu^+ + \nu_\mu)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} \sim 5 \times 10^{-2} \; .$$

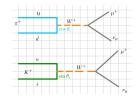
 This can happen if the u quark couples with both d and s quarks. Hence the weak eigenstates are [Cabibbo]

 $d^{'} = d\cos\theta_c + s\sin\theta_c$, $s^{'} = -d\sin\theta_c + s\cos\theta_c$.

IV ALICE-India School on QGP, 2021

Cabibbo angles

• It was observed that decays with $\Delta S = \pm 1$ are always suppressed.


$$\frac{m_K^3 f_\pi^2}{m_\pi^3 f_K^2} \left(\frac{m_\pi^2 - m_\mu^2}{m_K^2 - m_\mu^2} \right)^2 \frac{\Gamma(K^+ \to \mu^+ + \nu_\mu)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} \sim 5 \times 10^{-2} \; .$$

 This can happen if the u quark couples with both d and s quarks. Hence the weak eigenstates are [Cabibbo]

$$d' = d\cos\theta_c + s\sin\theta_c$$
, $s' = -d\sin\theta_c + s\cos\theta_c$.

• One can readily show that

$$\frac{m_K^3 f_\pi^2}{m_\pi^3 f_K^2} \left(\frac{m_\pi^2 - m_\mu^2}{m_K^2 - m_\mu^2} \right)^2 \frac{\Gamma(K^+ \to \mu^+ + \nu_\mu)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} \sim \tan^2 \theta_c \ , \ \theta_c \simeq 13^0.$$

IV ALICE-India School on QGP, 2021

Quark flavor mixing

 In fact for three families of quarks one can show that the weak eigenstates d', s', b' are related to mass eigenstates through CKM mixing matrix [Cabibbo-Kobayashi-Maskawa]

$$\begin{pmatrix} d'\\s\\c' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\c \end{pmatrix}$$

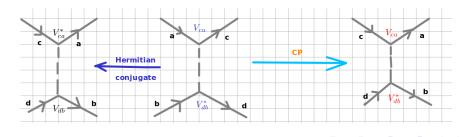
Quark flavor mixing

 In fact for three families of quarks one can show that the weak eigenstates d', s', b' are related to mass eigenstates through CKM mixing matrix [Cabibbo-Kobayashi-Maskawa]

$$\begin{pmatrix} d'\\ s\\ c' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\ s\\ c \end{pmatrix}$$

• The CKM matrix is a unitary matrix. There are 9 independent parameters. We can change the phase of the quark mass and weak eigenstates and absorb 6 parameters, but one is a global one. Therefore the CKM matrix contains 9-5=4 independent parameters.

Quark flavor mixing


 In fact for three families of quarks one can show that the weak eigenstates d', s', b' are related to mass eigenstates through CKM mixing matrix [Cabibbo-Kobayashi-Maskawa]

$$\begin{pmatrix} d'\\ s\\ c' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\ s\\ c \end{pmatrix}$$

- The CKM matrix is a unitary matrix. There are 9 independent parameters. We can change the phase of the quark mass and weak eigenstates and absorb 6 parameters, but one is a global one. Therefore the CKM matrix contains 9-5=4 independent parameters.
- Any orthogonal matrix has only N(N-1)/2 real parameters, so for N = 3 there are 3 angles and one residual phase for three families of quarks. This complex phase leads to CP violation in weak interactions.

CKM phase and CP violation

- There is a complex phase in V_{CKM} since there are 3 families of quarks.
- If there were only 2 families of quarks V_{CKM} is a 2 × 2 real matrix which is parametrized solely by the Cabibbo angle θ_c .
- If we look at a process $a + b \rightarrow c + d$ then the amplitude of its Hermitian conjugate process is not identically equal to its CP conjugate $\bar{a} + \bar{b} \rightarrow \bar{c} + \bar{d}$ because of the complex phase factor in V_{CKM} . This is the origin of CP violation.

References

- F. Halzen and A. D. Martin, "Quarks and Leptons", John Wiley & Sons (1984).
- T-P Cheng, L-F Li, "Gauge Theory of Elementary Particle Physics", Oxford University Press (1984).