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Introduction
Image blurred 
due to motion De-blurred image

Source: 
DOI: 10.1145/1924559.1924595 
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Source: 
http://jstarck.free.fr/Blind07.pdf

Finite detector resolution 
causes smearing

Smeared distribution 

Original distribution

“De-convolution” 
Or, 

“Unfolding”

Introduction

Poor  
Resolution

Better  
Resolution

De-convoluted

http://jstarck.free.fr/Blind07.pdf
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Experimental Apparatus
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Experimental Apparatus
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Experimental Apparatus
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Photon Multiplicity Detector

Two planes
24 modules in each plane
4608 cells in each module 

η:  2.3 to 3.9
Φ: 0 to 2π
Distance from IP: 367.5 cm
Cell size: 0.5 cm diameter 

CPV
Pb

Pre
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Instrumental Effects
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Finite Acceptance
The acceptance of a measurement corresponds to 
the range in which an observable of interest can be 
measured. 
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Finite Acceptance
The acceptance of a measurement corresponds to 
the range in which an observable of interest can be 
measured. 

Hits in pre-shower plane of PMD in ALICE

Loss of  
acceptance

p+p at 900 GeV
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Finite Acceptance
The acceptance of a measurement corresponds to 
the range in which an observable of interest can be 
measured. 

Hits in pre-shower plane of PMD in ALICE

Loss of  
acceptance

p+p at 900 GeV Acceptance
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Detection Efficiency

Efficiency(ϵ) =
< Measured events >

< True events >

Efficiency(ϵ) =
< Nγ−det >
< Nγ−inc >

Take example of PMD
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Detection Efficiency

Efficiency(ϵ) =
< Measured events >

< True events >

Efficiency(ϵ) =
< Nγ−det >
< Nγ−inc >

Take an example of PMD

Loose cut Strict cut

Efficiency
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Reconstruction Efficiency

Efficiency(ϵ) =
< Reconstructed tracks >

< Input tracks >

         Input —>          GEANT    —>  Reconstructed

(PYTHIA/HIJING)

e.g. pT spectra analysis

Obtained by simulations:
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Resolution
Energy resolution: The ability to distinguish to close 
lying energies (separate two close by signals).

Usually, represented in terms of full width at half 
maximum of the peak

σE

E
∼

a

E
( % )
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Resolution
Momentum resolution: 

σ(pT)
pT

∼ σs
pT

BL2 Npad−rows
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Backgrounds

Materials in front of PMD 
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Experimental Measurements
Any experimental measurements are subjected to 
effects from:

1. Finite Acceptance

2. Detection Efficiency

3. Detection Resolution

4. Backgrounds

5. …..

Measurements need to be corrected for these effects
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Unfolding Method
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True distribution: T(x)

Measured distribution: M (y)

M (y) = R(y,x) T(x)

R (y,x) is called the Response Matrix,


Rji is the conditional probability that a collision 
with true multiplicity i is measured as an event 
with multiplicity j 

Unfolding
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Unfolding

T(x) = R-1 M (y)

Matrix Inversion can cause large fluctuation

Unfolding: Estimating probability distribution from 
data that are smeared by random fluctuations
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Inversion of Response Matrix
Unfolding is an ILL-Posed problem

(y1
y2) = (0.9 0.0

0.0 0.8) × (x1
x2)

M (y) = R(y, x) T(x)

R With 

Only diagonal terms

Let’s take an example
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Unfolding is an ILL-Posed problem

(y1
y2) = (0.9 0.6

1.0 0.8) × (x1
x2)

M (y) = R T(x)

R With 

off-diagonal terms

Matrix inversion cause oscillations 
with large variances

Inversion of Response Matrix
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Regularization
Unfolding via matrix inversion cause oscillations 
with large variances due to the resolution of the 
measurement

Apply “Regularization”

Reduce reduce large fluctuations and variance of 
unfolded results
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Unfolding by χ2-minimization
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Unfolding by χ2-minimization

χ2(U) = ∑
i

(
Mi − ∑j RijUj

ei )
Can cause large fluctuation in unfolded distribution 

Uj is the guessed 

distribution
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Unfolding by χ2-minimization

χ2(U) = ∑
i

(
Mi − ∑j RijUj

ei )

Large fluctuation in 

unfolded distribution 

Uj is the guessed 

distribution
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Regularization in χ2-minimization

χ2(U) = ∑
i

(
Mi − ∑j RijUj

ei )
To minimize oscillation, we add a regularization term

with P(U) a weight factor β

χ2(U) = ̂χ2(U) + βP(U)

Regularization add a constraint that favors a certain 
shape of unfolded distributions

What is optimum β and P(U) ?
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Regularization in χ2-minimization
Different form of regularizations P(U)

What happens,

when β is very small … ?

or, when β is very large … ?

Constant function

Linear function

Favored shape

Exponential function

ad hoc information 
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Measured multiplicity of photons: P(Nγ-meas)

True multiplicity of photons:  P(Nγ-true)

Let’s take an example: Photon Multiplicity Detector

Unfolding by χ2-minimization
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Response Matrix 

P(Nγ-meas) versus P(Nγ-true)True distributions


(p+p) collisions

PYTHIA/PHOJET

GEANT


Measured 
distributions

Unfolding by χ2-minimization

Simulation
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Closure test of unfolding or training

Unfolding by χ2-minimization

Perform test using  
simulations

whether or, not  we 
can recover the true 
distribution
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Regularization by χ2-minimization
Optimize parameters β and P(U) using simulation

Apply parameters β and P(U) on real data to get 
unfolded (true) distribution
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Unfolding by Bayesian Method
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Bayes Theorem

P(A |B) =
P(B |A)P(A)

P(B)

P(A) : Prob of event A

P(B) : Prob of event B

P(A|B) : Prob of event A when B is true

P(B|A) : Prob of event B when A is true

R̂ij =
RijTi

∑k RikTk

Ui = ∑
j

R̂ijMj

Tk : Prior distribution for the 

true distribution Ti

Smoothening parameter, Iteration method ….

Unfolding by Bayesian Method
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Unfolding by Bayesian Method
Example

Measured distribution taken as a priory distribution
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Applications of unfolding 
Unfolding techniques are widely used in many analysis:

1. Multiplicity distribution

2. Collective flow analysis (flow fluctuation)

3. Jet analysis (Jet spectra)

4. Net-charge fluctuation

5. …..

— https://arxiv.org/pdf/1004.3514.pdf

— https://arxiv.org/pdf/1711.05594.pdf

— https://journals.aps.org/prc/pdf/10.1103/PhysRevC.101.034911

— https://arxiv.org/abs/1211.2074

https://arxiv.org/pdf/1004.3514.pdf
https://arxiv.org/pdf/1711.05594.pdf
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.101.034911
https://arxiv.org/abs/1211.2074
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RooUnfold
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RooUnfold package

git clone https://gitlab.cern.ch/RooUnfold/RooUnfold.git


cd RooUnfold 


Make


gSystem->Load("RooUnfold/libRooUnfold") 

Let’s look at: RooUnfold/examples/RooUnfoldExample.cxx 

Download

https://gitlab.cern.ch/RooUnfold/RooUnfold.git
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Thank you for your attention!
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Some references and further reading:
1. V. Blobel (https://arxiv.org/abs/hep-ex/0208022)

2. G. Cowan (https://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings/

cowan.pdf)

3. A. N. Tikhonov, (Sov. Math. 5 (1963) 1035): On method of Regularization

4. G. D’Agostini NIM A 362 (1995), 487: On Bayesian unfolding


6. RooUnfold by Tim Adye: https://hepunx.rl.ac.uk/~adye/software/unfold/
RooUnfold.html


         https://gitlab.cern.ch/RooUnfold/RooUnfold

7. Book: Data analysis Techniques for Physical Scientists, by C. Prenau

8. PhD Thesis: 

         https://www.hep.lu.se/staff/gustafsson/alice/thesis/janfietethesis.pdf

         http://www.hbni.ac.in/phdthesis/phys/PHYS07200904008.pdf

5.    …….

https://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings/cowan.pdf
https://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings/cowan.pdf
https://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
https://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
https://gitlab.cern.ch/RooUnfold/RooUnfold
https://www.hep.lu.se/staff/gustafsson/alice/thesis/janfietethesis.pdf
http://www.hbni.ac.in/phdthesis/phys/PHYS07200904008.pdf

