

CROME

Hardware/Software Co-Simulation of a Zynq SoC inside the CROME Measurement and Processing Unit

Jonas BODINGBAUER, Katharina CEESAY-SEITZ, Hamza BOUKABACHE

23/11/2021 - System-on-Chip Interest Group Meeting - CERN

https://crome.web.cern.ch

Daniel Perrin, Gael Ducos, Markus Widorski, Michel Pangallo, Sarath Kundumattathil Mohanan, Doris Forkel-Wirth, Stefan Roesler

Agenda

Hardware/Software Co-Simulation of a Zynq SoC inside the CROME Measurement and Processing Unit

- What is CROME?
- HW/SW Co-Simulation
- Short Demo

CERN Radiation Monitoring Electronics (CROME)

New in-house developed and produced radiation monitoring system for CERN Radiation Protection

- Real-time monitoring of the ambient dose equivalent rate over **9 decades** (from nSv/h to Sv/h)
- Alarm and interlock functionality with a probability of failure down to 10e-7 (Link)
- Edge computing (an SoC FPGA based system)
- Long-term, permanent reliable data logging
- Unified solution for RP and environmental monitoring

HW-/SW Co-Simulation - Jonas Bodingbauer

Detector (Ionization chamber in this picture) CMPU - Electronics Core Monitoring & Processing Unit)

TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING Radiat Prot Dosimetry. 2017 Apr; 173(1-3): 240–244.

Radiation & Environmental Monitoring System at CERN

Currently we have replaced:

153 radiation monitors, 78 alarm units, 107 Power Supplies

(532 pieces of equipment)

Self production capabilities

CERN Radiation Monitoring Electronics (CROME)

Highly Integrated Solution:

Fault Resilient Design for 28nm ZYNQ SoC based Radiation Protection Monitoring System Fulfilling Safety Integrity Level 2

<u>First System-on-Chip Workshop</u> – CERN – June 12, 2019

SoM cooling

Zyng 7000 based SoM

CERN Radiation Monitoring Electronics (CROME)

System

ARM

Hardware-/Software Co-Simulation

What?

Simulation of software and hardware at the same time

Why?

- System level verification
- Simplifies development because of visibility of signals
- Much faster than simulation of CPU in RTL → feasible
- Virtual Prototyping. Hardware does not need to be available yet (not applicable for us)

How?

23/11/2021

- Two simulators connected together to allow for simulation of entire system, so: one for Software and one for Hardware
- QEMU simulating Linux and Questa for RTL

- "A generic and open source machine emulator and virtualizer"
- "provides a virtual model of an entire machine (CPU, memory and emulated devices) to run a guest OS"
- Translates Guest instructions dynamically to Host instructions

HW-/SW Co-Simulation - Jonas Bodingbauer

Our case

- Emulates the two ARM Cores and (implemented) peripherals on a desktop PC
- Runs Linux and embedded application

CERN Radiation Monitoring Electronics and its Integration Into both, CERN and ESS Supervisory Systems

System-on-Chip Interest Group Meeting – CERN – April 29th 2020

HW - Device Tree for QEMU

Register XGPIOPS_DIRM_OFFSET Details

This register controls whether the IO pin is acting as an input or an output. Since the input logic is always enabled, this effectively enables/disables the output driver.

Each bit of the bank is independently controlled.

This register controls bank0, which corresponds to MIO[31:0].

Field Name	Bits	Туре	Reset Value	Description
DIRECTION_0	31:0	rw	0x0	Direction mode
				0: input
				1: output
				Each bit configures the corresponding pin within the 32-bit bank
				NOTE: bits[8:7] of bank0 cannot be used as inputs.
				The DIRM bits can be set to 0, but reading DATA_RO does not reflect the input value. See the GPIO chapter for more information.

Xilinx Zynq-7000 SoC Technical Reference Manual Page 1338

EMU GPIO Device

CROME System

```
static uint64_t gpio_dir_prew(RegisterInfo *reg, uint64_t val)
    ZynqGPIOState *s = ZYNQ GPIO(reg->opaque);
    uint32_t data = (uint32_t) val;
    uint32_t data_old = *(uint32_t *)reg->data;
    int bank = gpio_get_bank(reg->access->addr);
    int width = bank==1 ? 22 : 32;
    uint32_t mask = data ^ data_old; //all bits where something changed
    gpio_update_pins(s, bank, ∅, width, mask,
                     (s->regs[R GPIO DATA X(bank)]),(s->regs[R GPIO OEN X(bank)]),
                     data,data_old);
    return val;
```

Applications Linux Device Drivers

Emulated Devices

QEMU

Overview of communication, simplified

Software issues pin change

Device-driver writes to some memory location

RTL simulator receives packet and translates it to pin-changes

QEMU device gets triggered, translates and sends packet

Simulator propagates changes to design

libsystemctlm-soc / remote-port

- Communication between two simulators
 - RTL: SystemC library for sending and receiving remote-port packets
 - QEMU: C counterpart, "Virtual QEMU device"
- TLM semantics
- SystemC bridges, which translate packets from tlm to pin changes
 - AXI, ACE, CHI, CXS, PCI
 - GPIO

23/11/2021

- Provides time synchronisation between simulators
- Uses unix-socket or tcp

RTL-Simulation

- Run simulation on Top-Level
 - Exchange the Zynq component
- Implement Models of Peripherals
 - Our Case: ADCs, Temp Sensor, Measurement electronics
- Current Objective: writing a system-level testbench using UVM

RTL-Simulation

- Replacing instance system_proccessing_system7_0_0 with custom instance
 - Exposes AXI busses GPIO and other connections to VHDL
 - Translates messages from remote-port to RTL pin changes and vice versa
- Needs Mixed Language Simulator (SystemC, VHDL and/or Verilog)
 - Developed with Questa

REMUS

Supervision

Demo Setup

- When average input current is **above** a threshold an **alarm** is triggered
 - This alarm results in a pin change in hardware
 - Also sent to software
- Configured so it only averages one value → instant changes

Zynq SoC

Processing System

User Application

Linux

Results

Introduction

- Working Co-Simulation for the ZYNQ and furthermore the **CMPU**
- Currently used for debugging of additional features
- Simulation speed is only ~30 times slower than realtime **@1MHz** for our design

Outlook

- Could likely be adjusted to other projects
- If SystemC Model exists, RTL part could be replaced to further increase simulation speed
- Other open source tools like Verilator could be interesting to further speed up simulation

HW/SW Co-Simulation

Open Source Projects Used

- Xilinx Qemu https://github.com/Xilinx/qemu
- Xilinx libsystemctlm-soc https://github.com/Xilinx/libsystemctlm-soc
- Xilinx qemu-devicetrees https://github.com/Xilinx/qemu-devicetrees
- Rick Wertenbroek, CoSimulation https://blog.reds.ch/?p=1180

23/11/2021

Custom plastic chamber with

graphite coating

CERN Radiation Monitoring Electronics (CROME)

Two configurations:

CROME Rack Version – High radiation Areas

CROME Bulk Version – Low radiation Areas

