

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

WP10: Advanced Accelerator Technologies - Additive Manufacturing

Strategic goals

Prof. Toms TORIMS / RTU & CERN

Task 10.2: AM – Survey of applications and potential developments / M1 – M36	Survey	Survey of current Additive Manufacturing (AM) applications in accelerators and identification of needs for future development and research actions		
	Promote	Promote initiatives to identify how AM can address the needs of the accelerator community		
Task Leader: Prof. Maurizio VEDANI -				
PoliMi	Define	Define strategic directions for future AM technologies and foster their impact on accelerator applications (inc. societal), identifying technology barrier and challenges		

Task 10.3: Refurbishment of accelerator components by AM technologies / M1 – M24

Task Leader:

Dr. Andris RATKUS – RTU

Definition of applications and components for the **repair** activities in the accelerator components **by AM**

Identification of **AM strategies** that can be adopted **to repair** parts

Study **post-processing methods** to control surface roughness and surface cleanliness of AM parts

Identification of a sample **demonstration prototype** of AM repaired unit for an accelerator

Task 10.4: Development of AM-manufactured superconductive RF cavities / M1 – M24

Task Leader:

Ing. Adriano PEPATO - INFN PD Develop the **design approach and test** relevant properties of **AM-manufactured Niobium RF cavities**

Develop the **design approach and test** relevant properties of **AM-manufactured Ultra-Pure Cu-made RF** body cavities coated by a Niobium thin layer at the inner surface

Both to be tested at room and at cryogenic temperature

Big challenges require joint response: Task 10.2; Task 10.3 and Task 10.4

leal outg poros	ium, cryo, RF: k tightness, gassing rate, sity, electrical onductivity	machi available	tations of nes and simulation ols	clean, c purity – s avaliabi	ls: ultra- hemical till limited lity, flow erties	roug toler	;y: surface hness, ances, y precision		on impact ctivation
	specif optimisa requirn	nnological icities an ition to end nents (RF, o, etc.)	uniformit stresses, i	ructure y, residual nclusions, holding	Potenti process eventua mach	ing and I hybrid-	traditiona knowle scepticis complian stringent	importantly: lism, lack of edge, and sm on AM ce with the accelerator rements	

Expected outcomes: Task 10.2; Task 10.3 and Task 10.4

Hard Deliverables

- D10.3: AM Superconductive RF cavities. Production and tests of superconductive RF cavities, made by Nb and/or Cu coated by an Nb thin film – M12
- D10.2: Survey of AM applications and strategies for repairing accelerator components by AM. Report listing possible strategies and technologies for repairing of parts – M24
- D10.1: Potential AM applications in accelerators. Report on output of the survey on AM applications, further needs for the accelerator community, and perspective developments – M30

Soft results

- WP 10 Strategy group will work on the emerging applications of AM technologies in the accelerator field
- Will define further potential applications

 in particular, for industrial and medical accelerators
- Will explore possibilities of digitalisation in accelerators, evaluating market and economical aspects concerned with AM in the accelerator sector
- PhD engagement and scientific mobility/exchange (especially NE Europe)
- This all shall result in a "Roadmap of future AM applications for accelerators"

Milestones

WP10 Advanced accelerator technologies

- 10,1 Coordination and communication
- 10,2 Additive Manufacturing Survey of applications and potential developments
- 10,3 Refurbishment of accelerator components by AM technologies
- 10,4 Development of AM-manufactured superconductive RF cavities

MS43	Dissemination and communication plan	10.1	12	Report
MS44	Survey on current AM applications in accelerators and expected new developments	10.2	30	Report
MS45	Survey on current AM repair technologies for accelerator and list of possible applications	10.3	24	Report
MS46	Performance of Superconductive Cavities made by AM technology by Nb or Cu with Nb thin spattered film on the internal surface	10.4	12	Report

Μ

D

м

D

м

D

D

Μ

Strategic goals of AM Group within WP10

Fully in line with High-priority future initiatives of 2020 Update of the European Strategy for Particle Physics:

- A. The particle physics community should ramp up its **R&D effort** focused on advanced accelerator technologies ...
- B. The European particle physics community must **intensify accelerator R&D** and sustain it with adequate resources. A roadmap should prioritise the technology, taking into account synergies with international partners and other communities ...

To proliferate AM R&D in the Accelerator Community at large

To give a visibility to already remarkable achievements

To rise the trust to AM by showing real and tangible R&D case studies

To contribute to Accelerator Community Projects and Collaborations – especially related to societal applications – e.g.NIMMS, SEEIIST, HITRIPlus - hadron therapy

To lower overall costs by using AM (e.g. reduced material consumption and repairs) – sustainability

To promote range of new **AM projects** and grants within Accelerator Community and beyond

To pull resources and knowledge together + to engage new partners

To take a leadership at European level and coordinate efforts with US and China partners – to become AM Strategy Group for the Accelerator Community

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.