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10.6 Task Summary

* Long term mission: Develop low-latency Machine Learning (ML)
techniques to improve performance and availability of high-power

facilities at the intensity frontier.
* Goal: Identify signatures of potential errant beam conditions

* Scope:
* Assess the predictive capabilities of selected ML models

* Prototype: proof of principle demonstration

* The most promising ML model will be implemented on a low-latency network of FPGAs
processing signals from array of detector channels.
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Collaborators and responsibilities

Beneficiaries Additional participants
. ES°SExpertise' Diagnostic scientists, Data * CosyLab = via subcontract from ESS
manager,.FPGA engineers ' * FPGA implementation
* Contribution: * SNS/ORNL — collaboration
* Demo platform: Linac * > decade of operational data
* FPGA-based diagnostics * Active machine learning project

* Low latency communications

* RTU — Faculty of Computer Science
and Information
* Expertise: Al, ML and FPGA
* Contribution
* Full-time master student

* Master student supervision (senior
researcher/professor)
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Timeline — Now in preparation and development
phase

mmm) - \odel preparation (Q3 2021 — Q1 2022)

* ML model exploration
* Data format preparation

* Assess the predictive capabilities of selected ML models, trained with
(Q1 2022 — Q2 2023, milestone Q4 2022: selection for demo):

* simulation results
 existing SNS operation data (13 years of operation data)
* ESS commissioning data within the timeline of the project

mmm) - ML FPGA platform development (Q2 2021 - Q4 2022)

* Low-latency network development and optimisation
* Acceleration of ML model on FPGA platform

* Demonstration (Q1 2023 - Q2 2024)
* Inthelab
* |n Linac

* Report (March 2024)
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1. Intelligent Trigger - Data Acquisition

* Goal:
* |dentify “off-normal/interesting” and “normal” events

* Trigger DoD* acquisition for each “off normal” event

Data-On-Demand (DoD) is event acquisition: raw or detailed data, buffered and then extracted
from the FPGA level on trigger occurrence (on demand)

* Relevant systems: Beam Loss, Beam Position, Beam Current

* Challenges
* Select appropriate model for anomaly detection

* Conditions will change with time — may require “online learning” (unsupervised ML
model; adaptive ML?

* |dentify relevant data
* dataset type and structure (what data to take from each system)
* dataset triage/”cleaning” (for example remove beam study data)
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2. Machine Protection

* Goal: inhibit beam production when damaging conditions are
recognised/predicted

* Relevant systems: Loss and Current; also Position, Faraday Cup, etc for
protecting specific beam destinations.

* Can be considered an advanced version of “intelligent trigger” application

* Correlation of known failures with the datasets extracted with “intelligent trigger” as
precursors (offline analysis)

* Use these identified precursor datasets (loss patterns or other errant conditions) as
training datasets for ML based machine protection
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Example: Beam Loss in the ESS Linac

* Figure: Incoming neutron hit maps for different localized loss locations along a DTL tank
* This map is sampled by small number of detectors

* Resulting signal has complex relationship to the beam properties at the potential

damage point
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NeXus data format (example: ESS
diagnostics data)

Data NXEntry: Shift ID and/or Asset ID and

Timestamp (start and end)

* Selected NeXus variant of HDF5 standard
(https://www.nexusformat.org) A[mtmme

* In-Kind ID number
* role (optional)

* Used in the neutron and X-ray communities

(NXInstrument

* With ORNL, developed emittance data structure. « W shoudl crested new classs or thesqpments s use

* NXSource, NXRf, NXPbi, NXMagnets and NXTiming (new nexus classes)
* Machine Description can be here (add on NXequipment class and add attributes to

* We will build on this to cover ML-related data that we intend descrive 1 )
to exchange

NX Parameters

* Coverage: [+ Process parameters
* Operations data from SNS
* Commissioning data from ESS
e Simulation data from ESS

NXNote (optional) ]

e Further information needed
\

-
NXData
* Any data pertinent to the experiment/calibration or verification
e |t is possible to create link between the instrument and data (should be looked into
\__in more details)

NXLog

¢ Special class for time series data
\
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https://www.nexusformat.org/

Tools

* 2 platforms

SW/HW Developer | </> Al & Data Scientist

1. Xilinx Zynq: Current generation Vitis IDE Frameworks
2. Xilinx Versal ACAP: Bleeding Design C/C++ Caffe 1 TensorFlow P
edge with dedicated Al cores
* Advantage: short turn-around LI R
o ] (Kernel & Graph Programming) Vitis Al o
and flexibility when exploring e i eodals —
ML app“cations Defined Labs Libraries
Al Optimizers

* The downside: compiled \

software -> latency herate | ComPllen Al Engine Compiler
1. Zynq: Software feeds the
accelerator cores. Xilinx Runtime Library (XRT)

2. Versal: can feed Al cores directl
from FPGA logic

Run Xilinx oR ’;'}'{'n":
Versal A (DPU cores)
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Demo in Linac
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Next steps

* Summarize applications/techniques in I.FAST collaboration space

» Stand up parallel ML toolchains at ESS and RTU, consistent with FPGA
platform capabilities

* With SNS, continue collaboration on data exchange and protection
applications

* Launch periodic collaboration meetings between ESS and RTU. Add SNS and
others as needed to target specific topics.

* Explore synergy with other I.FAST tasks
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Motivation and Background

High power hadron facilities

* Performance on the intensity frontier is enabled by controlling
loss/activation and mitigating beam-induced damage

* Tails of the beam distribution are important contributors to activation
 Subtle changes might be predictors of future damage events

* Challenging to directly measure tails and subtle changes without
invasive techniques

* Result: predictions and decisions are based on incomplete and imprecise
measurements
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Strategy

* Graded approach
Deployed as trust increases.
* Intelligent trigger: gather the relevant data for model selection and initial training
* Alarms to operators
* Automatic functions: protection and feedback

* Enablers

Many provided outside of the IFAST program. Task 10.6 extends and leverages these technologies to
achieve goals.

* Triggered, buffered Data Acquisition at the network edge

* Low latency communication for sensor aggregation

* Platform to host low latency algorithms

* Adequate data transport and storage — collaboration with ESS Neutron Science
* Tools for curation, analysis and offline training

* At the heart of this: Standard data structures for exchange within the team and with other
facilities: NeXuS
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Low-latency applications under consideration

Currently exploring several Low-Latency applications
* ML based Intelligent Trigger for Data-On-Demand (DoD)

* ML based machine protection

* Beam Loss
* Beam destination protection
* Additional sensor aggregation applications

* Interesting low-latency, single-device applications considered but de-
emphasized (particle discrimination, image recognition, etc)
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Example: Energy deposition on beam destinations

* Damage in Faraday cups and beam stops depends on beam properties that
are not directly measured
* Transverse density distribution
* Low energy tail of longitudinal distribution

* Relevant measurement devices
* BPM (centroid phase -> energy)
* FC— BCM current difference
* Option: BLM (combine with others to account for upstream loss)

* Use these imperfect but low-latency signals to predict thermo-mechanical
response and the resulting damage potential
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ORNL/SNS Example

3

Prevention of errant beam

 Research: How to prevent errant beam pulses

4 )
 Approach: 3 Use before
. = ulse as
- Equipment affects beam—-> use beam data £ anorm.
(1]
» SCL Beam losses: prevent cavity damage 3
* No SCL Losses: avoid long equipment down times =
Super Conducting Linac Cavities
T | — T DSt Differential Current Monitor to
Current . Current protect SCL from beam loss
| _Abort damage
........ LS
Normal_N ﬁ
. . ) —*—
- Siamese Twin method:
) Normal_1
* Uncertainty aware —
* Able to classify not seen before pulses ,
 Detect out-of-date model Beam pulse
$QAK RIDCE e

Siamese twin method

from
W. Blokland
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ORNL/SNS Example

Prevention of errant beam

e Status:

- Determined ML method goal:
« Keep False Positive rate (FP) <0.1%
- Applied method to March 2021 data:

« ~6100 trips, of which 126 with SCL beam loss

« We can keep well under 0.1% FP with around 50%
True Positive (TP) rate.

e Plan:

- Implementing Siamese Twin (RT) and Random
Forest (FPGA) on DCM:

» Collect statistics first passively, then with abort active
- Add equipment classification!

« We want to predict what equipment is going to fail:
keep metrics, determine beam hold-off, and adjust
or service equipment

- Use BPM data (phase)
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