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10.6 Task Summary
• Long term mission: Develop low-latency Machine Learning (ML) 

techniques to improve performance and availability of high-power 
facilities at the intensity frontier.

• Goal: Identify signatures of potential errant beam conditions

• Scope:
• Assess the predictive capabilities of selected ML models
• Prototype: proof of principle demonstration

• The most promising ML model will be implemented on a low-latency network of FPGAs 
processing signals from array of detector channels. 
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Collaborators and responsibilities
Beneficiaries
• ESS 

• Expertise:  Diagnostic scientists, Data 
manager, FPGA engineers

• Contribution: 
• Demo platform: Linac
• FPGA-based diagnostics
• Low latency communications

• RTU – Faculty of Computer Science 
and Information
• Expertise: AI, ML and FPGA
• Contribution

• Full-time master student 
• Master student supervision (senior 

researcher/professor)

Additional participants
• CosyLab – via subcontract from ESS

• FPGA implementation

• SNS/ORNL – collaboration
• > decade of operational data
• Active machine learning project

Shea, Kittelmann IFAST WP 10 meeting 2021-11-15

3



Timeline – Now in preparation and development 
phase
• Model preparation (Q3 2021 – Q1 2022)

• ML model exploration
• Data format preparation

• Assess the predictive capabilities of selected ML models, trained with
(Q1 2022 – Q2 2023, milestone Q4 2022: selection for demo):
• simulation results
• existing SNS operation data (13 years of operation data)
• ESS commissioning data within the timeline of the project

• ML FPGA platform development (Q2 2021 - Q4 2022)
• Low-latency network development and optimisation
• Acceleration of ML model on FPGA platform

• Demonstration (Q1 2023 - Q2 2024)
• In the lab
• In Linac

• Report (March 2024)
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1. Intelligent Trigger - Data Acquisition

• Goal:
• Identify “off-normal/interesting” and “normal” events 
• Trigger DoD* acquisition for each “off normal” event

Data-On-Demand (DoD) is event acquisition: raw or detailed data, buffered and then extracted 
from the FPGA level on trigger occurrence (on demand) 

• Relevant systems: Beam Loss, Beam Position, Beam Current
• Challenges

• Select appropriate model for anomaly detection
• Conditions will change with time – may require “online learning” (unsupervised ML 

model; adaptive ML)
• Identify relevant data 

• dataset type and structure (what data to take from each system)
• dataset triage/”cleaning” (for example remove beam study data)
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2. Machine Protection

• Goal: inhibit beam production when damaging conditions are 
recognised/predicted

• Relevant systems: Loss and Current; also Position, Faraday Cup, etc for 
protecting specific beam destinations.

• Can be considered an advanced version of ”intelligent trigger” application
• Correlation of known failures with the datasets extracted with ”intelligent trigger” as 

precursors (offline analysis)
• Use these identified precursor datasets (loss patterns or other errant conditions) as 

training datasets for ML based machine protection
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Example: Beam Loss in the ESS Linac
• Figure: Incoming neutron hit maps for different localized loss locations along a DTL tank

• This map is sampled by small number of detectors

• Resulting signal has complex relationship to the beam properties at the potential 
damage point
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Data
• Selected NeXus variant of HDF5 standard 

(https://www.nexusformat.org)

• Used in the neutron and X-ray communities

• With ORNL, developed emittance data structure.
• We will build on this to cover ML-related data that we intend 

to exchange

• Coverage:
• Operations data from SNS

• Commissioning data from ESS

• Simulation data from ESS
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NeXus data format (example: ESS 
diagnostics data)
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Tools
• 2 platforms

1. Xilinx Zynq: Current generation 

2. Xilinx Versal ACAP: Bleeding 
edge with dedicated AI cores

• Advantage: short turn-around 
and flexibility when exploring 
ML applications

• The downside: compiled 
software -> latency

1. Zynq: Software feeds the 
accelerator cores.

2. Versal: can feed AI cores directly 
from FPGA logic
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Demo in Linac
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Next steps

• Summarize applications/techniques in I.FAST collaboration space

• Stand up parallel ML toolchains at ESS and RTU, consistent with FPGA 
platform capabilities

• With SNS, continue collaboration on data exchange and protection 
applications

• Launch periodic collaboration meetings between ESS and RTU. Add SNS and 
others as needed to target specific topics.

• Explore synergy with other I.FAST tasks
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Motivation and Background

High power hadron facilities
• Performance on the intensity frontier is enabled by controlling 

loss/activation and mitigating beam-induced damage
• Tails of the beam distribution are important contributors to activation 
• Subtle changes might be predictors of future damage events
• Challenging to directly measure tails and subtle changes without 

invasive techniques
• Result: predictions and decisions are based on incomplete and imprecise 

measurements
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Strategy
• Graded approach

Deployed as trust increases. 
• Intelligent trigger: gather the relevant data for model selection and initial training
• Alarms to operators
• Automatic functions: protection and feedback

• Enablers
Many provided outside of the IFAST program. Task 10.6 extends and leverages these technologies to 
achieve goals.
• Triggered, buffered Data Acquisition at the network edge
• Low latency communication for sensor aggregation
• Platform to host low latency algorithms
• Adequate data transport and storage – collaboration with ESS Neutron Science
• Tools for curation, analysis and offline training
• At the heart of this: Standard data structures for exchange within the team and with other 

facilities: NeXuS
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Low-latency applications under consideration

Currently exploring several Low-Latency applications

• ML based Intelligent Trigger for Data-On-Demand (DoD)

• ML based machine protection
• Beam Loss
• Beam destination protection
• Additional sensor aggregation applications

• Interesting low-latency, single-device applications considered but de-
emphasized (particle discrimination, image recognition, etc)
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Example: Energy deposition on beam destinations

• Damage in Faraday cups and beam stops depends on beam properties that 
are not directly measured
• Transverse density distribution
• Low energy tail of longitudinal distribution

• Relevant measurement devices
• BPM (centroid phase -> energy)
• FC – BCM current difference
• Option: BLM (combine with others to account for upstream loss)

• Use these imperfect but low-latency signals to predict thermo-mechanical 
response and the resulting damage potential
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ORNL/SNS Example
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ORNL/SNS Example
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Platform
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• Versal “Adaptable Compute 
Acceleration Platform, ACAP”

• The NoC and Versal AI kernels in the 
diagram is made of dedicated hardware 
(not FPGA logic)

• The design can be divided into two 
parts (compare with tool diagram)

• The “Hardware Platform” part is made by 
FPGA designer

• The “Software Reconfigurable” part can 
be reconfigured in the SW compile flow 
with quick turnaround.

• Data can be streamed directly from 
input to the AI kernels for processing. 


