

Task 10.6: Machine Learning Techniques for Accelerator and Target Diagnostics

I.FAST WP10 meeting, 2021-11-15

Thomas Shea (Task leader) and Irena Dolenc Kittelmann (Deputy Task Leader) ESS for the Task 10.6 team

İFAST

10.6 Task Summary

- Long term mission: Develop low-latency Machine Learning (ML) techniques to improve performance and availability of high-power facilities at the intensity frontier.
- Goal: Identify signatures of potential errant beam conditions
- Scope:
 - Assess the predictive capabilities of selected ML models
 - Prototype: proof of principle demonstration
 - The most promising ML model will be implemented on a low-latency network of FPGAs processing signals from array of detector channels.

Collaborators and responsibilities

Beneficiaries

• ESS

- Expertise: Diagnostic scientists, Data manager, FPGA engineers
- Contribution:
 - Demo platform: Linac
 - FPGA-based diagnostics
 - Low latency communications
- RTU Faculty of Computer Science and Information
 - Expertise: AI, ML and FPGA
 - Contribution
 - Full-time master student
 - Master student supervision (senior researcher/professor)

Additional participants

- CosyLab via subcontract from ESS
 - FPGA implementation
- SNS/ORNL collaboration
 - > decade of operational data
 - Active machine learning project

Timeline – Now in preparation and development phase

- Model preparation (Q3 2021 Q1 2022)
 - ML model exploration
 - Data format preparation
- Assess the predictive capabilities of selected ML models, trained with (Q1 2022 – Q2 2023, milestone Q4 2022: selection for demo):
 - simulation results
 - existing SNS operation data (13 years of operation data)
 - ESS commissioning data within the timeline of the project
- ML FPGA platform development (Q2 2021 Q4 2022)
 - Low-latency network development and optimisation
 - Acceleration of ML model on FPGA platform
 - Demonstration (Q1 2023 Q2 2024)
 - In the lab
 - In Linac

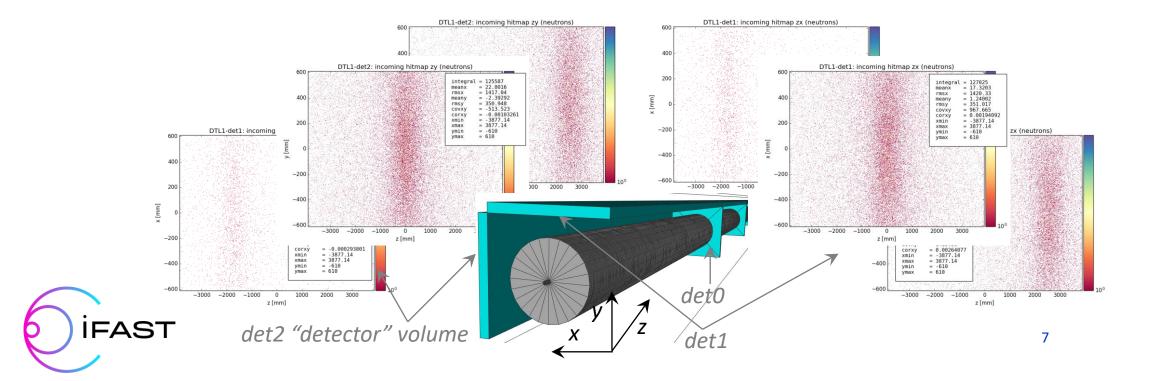
FAST

Report (March 2024)

1. Intelligent Trigger - Data Acquisition

• Goal:

- Identify "off-normal/interesting" and "normal" events
- Trigger DoD* acquisition for each "off normal" event Data-On-Demand (DoD) is event acquisition: raw or detailed data, buffered and then extracted from the FPGA level on trigger occurrence (on demand)
- Relevant systems: Beam Loss, Beam Position, Beam Current
- Challenges
 - Select appropriate model for anomaly detection
 - Conditions will change with time may require "online learning" (unsupervised ML model; adaptive ML)
 - Identify relevant data
 - dataset type and structure (what data to take from each system)
 - dataset triage/"cleaning" (for example remove beam study data)


2. Machine Protection

- Goal: inhibit beam production when damaging conditions are recognised/predicted
- Relevant systems: Loss and Current; also Position, Faraday Cup, etc for protecting specific beam destinations.
- Can be considered an advanced version of "intelligent trigger" application
 - Correlation of known failures with the datasets extracted with "intelligent trigger" as precursors (offline analysis)
 - Use these identified precursor datasets (loss patterns or other errant conditions) as training datasets for ML based machine protection

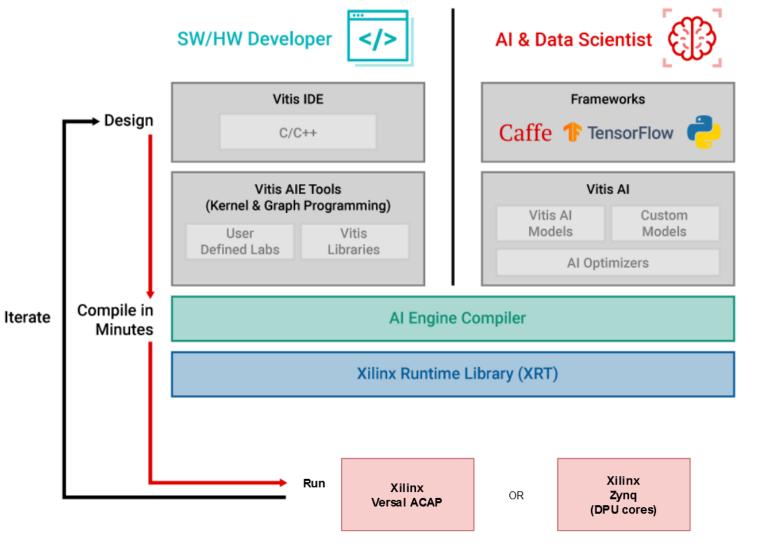
Example: Beam Loss in the ESS Linac

- Figure: Incoming neutron hit maps for different localized loss locations along a DTL tank
- This map is sampled by small number of detectors
- Resulting signal has complex relationship to the beam properties at the potential damage point

Data

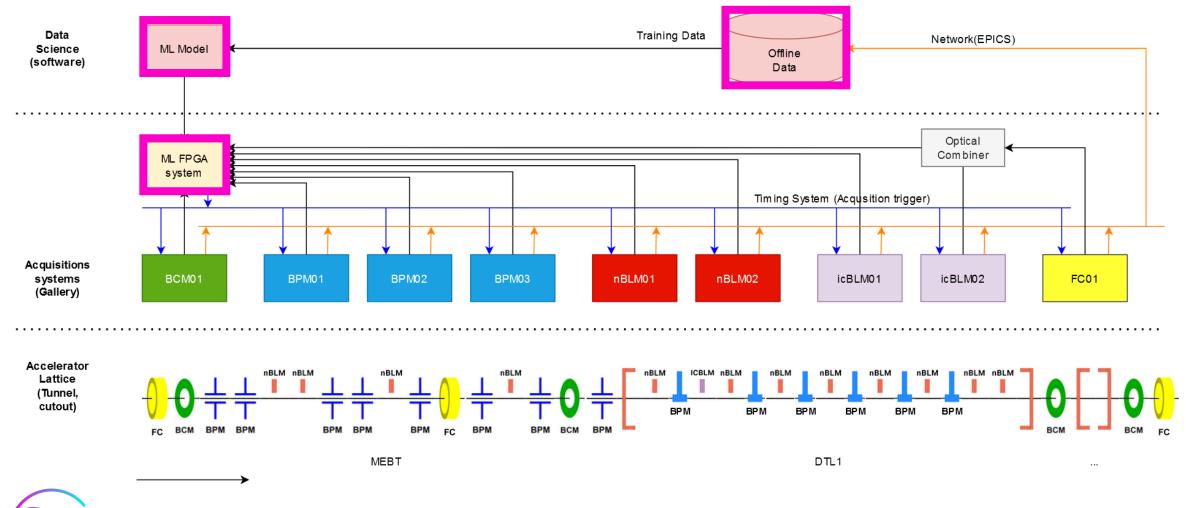
- Selected NeXus variant of HDF5 standard (<u>https://www.nexusformat.org</u>)
- Used in the neutron and X-ray communities
- With ORNL, developed emittance data structure.
 - We will build on this to cover ML-related data that we intend to exchange
- Coverage:
 - Operations data from SNS
 - Commissioning data from ESS
 - Simulation data from ESS

diagnostics data)
NXEntry: Shift ID and/or Asset ID and Timestamp (start and end)
NXUser • Operator Name • Affiliation • In-Kind ID number • role (optional)
 NXInstrument WQe shoudl created new classes for the equipments we use NXSource, NXRf, NXPbi, NXMagnets and NXTiming (new nexus classes) Machine Description can be here (add on NXequipment class and add attributes to describe it)
NX Parameters Process parameters
NXNote (optional) • Further information needed
NXData Any data pertinent to the experiment/calibration or verification It is possible to create link between the instrument and data (should be looked into in more details)
NXLog Special class for time series data


NeXus data format (example: ESS

Tools

• 2 platforms


- 1. Xilinx Zynq: Current generation
- 2. Xilinx Versal ACAP: Bleeding edge with dedicated AI cores
- Advantage: short turn-around and flexibility when exploring ML applications
- The downside: compiled software -> latency
 - 1. Zynq: Software feeds the accelerator cores.
 - 2. Versal: can feed AI cores directl from FPGA logic

Demo in Linac

FAST

Shea, Kittelmann IFAST WP 10 meeting 2021-11-15

Next steps

- Summarize applications/techniques in I.FAST collaboration space
- Stand up parallel ML toolchains at ESS and RTU, consistent with FPGA platform capabilities
- With SNS, continue collaboration on data exchange and protection applications
- Launch periodic collaboration meetings between ESS and RTU. Add SNS and others as needed to target specific topics.
- Explore synergy with other I.FAST tasks

IFAST

Thomas Shea, Irena Dolenc Kittelmann, Kaj Rosengren, Roxana Tarkeshian, Elena Donegani, Clement Derrez – ESS Toms Torims, Agris Nikitenko – DTU

Willem Blokland – ORNL

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Motivation and Background

High power hadron facilities

- Performance on the intensity frontier is enabled by controlling loss/activation and mitigating beam-induced damage
- Tails of the beam distribution are important contributors to activation
- Subtle changes might be predictors of future damage events
- Challenging to directly measure tails and subtle changes without invasive techniques
- Result: predictions and decisions are based on incomplete and imprecise measurements

Strategy

• Graded approach

Deployed as trust increases.

- Intelligent trigger: gather the relevant data for model selection and initial training
- Alarms to operators
- Automatic functions: protection and feedback
- Enablers

Many provided outside of the IFAST program. Task 10.6 extends and leverages these technologies to achieve goals.

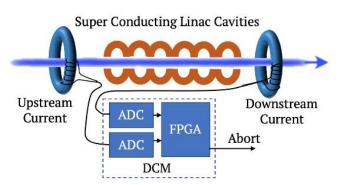
- Triggered, buffered Data Acquisition at the network edge
- Low latency communication for sensor aggregation
- Platform to host low latency algorithms
- Adequate data transport and storage collaboration with ESS Neutron Science
- Tools for curation, analysis and offline training
- At the heart of this: Standard data structures for exchange within the team and with other facilities: NeXuS

Low-latency applications under consideration

Currently exploring several Low-Latency applications

- ML based Intelligent Trigger for Data-On-Demand (DoD)
- ML based machine protection
 - Beam Loss
 - Beam destination protection
 - Additional sensor aggregation applications
- Interesting low-latency, single-device applications considered but deemphasized (particle discrimination, image recognition, etc)

Example: Energy deposition on beam destinations


- Damage in Faraday cups and beam stops depends on beam properties that are not directly measured
 - Transverse density distribution
 - Low energy tail of longitudinal distribution
- Relevant measurement devices
 - BPM (centroid phase -> energy)
 - FC BCM current difference
 - Option: BLM (combine with others to account for upstream loss)
- Use these imperfect but low-latency signals to predict thermo-mechanical response and the resulting damage potential

ORNL/SNS Example

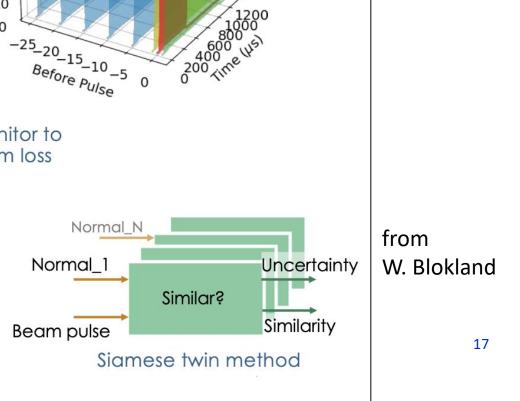
Prevention of errant beam

- Research: How to prevent errant beam pulses
- Approach:
 - Equipment affects beam \rightarrow use beam data
 - SCL Beam losses: prevent cavity damage
 - No SCL Losses: avoid long equipment down times

Differential Current Monitor to protect SCL from beam loss damage

Amplitude (mA)

40


30

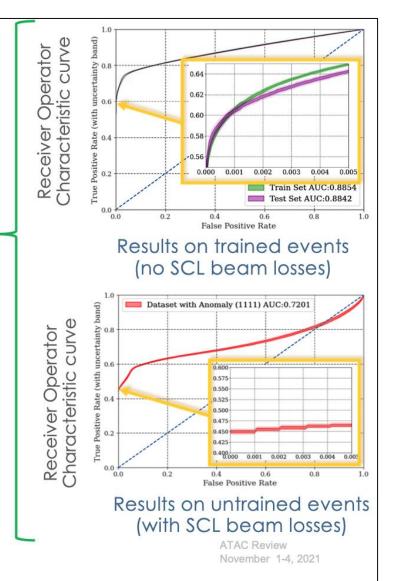
20

10

0

- Siamese Twin method:
 - Uncertainty aware
 - Able to classify not seen before pulses
 - Detect out-of-date model •

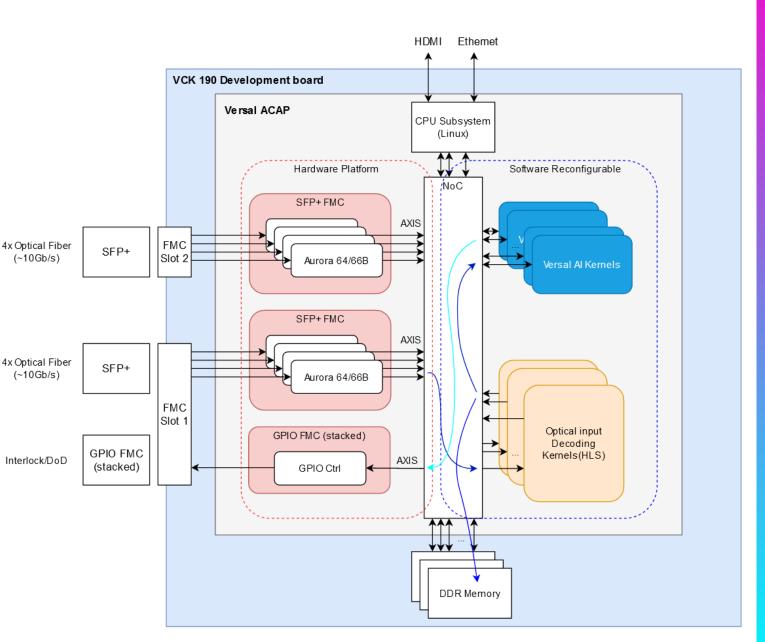
Use before


pulse as

abnormal

ORNL/SNS Example

Prevention of errant beam


- Status:
 - Determined ML method goal:
 - Keep False Positive rate (FP) < 0.1%
 - Applied method to March 2021 data:
 - ~6100 trips, of which 126 with SCL beam loss
 - We can keep well under 0.1% FP with around 50% True Positive (TP) rate.
- Plan:
 - Implementing Siamese Twin (RT) and Random Forest (FPGA) on DCM:
 - Collect statistics first passively, then with abort active
 - Add equipment classification!
 - We want to predict what equipment is going to fail: keep metrics, determine beam hold-off, and adjust or service equipment
 - Use BPM data (phase)

Platform

FAST

- Versal "Adaptable Compute Acceleration Platform, ACAP"
 - The NoC and Versal AI kernels in the diagram is made of dedicated hardware (not FPGA logic)
- The design can be divided into two parts (compare with tool diagram)
 - The "Hardware Platform" part is made by FPGA designer
 - The "Software Reconfigurable" part can be reconfigured in the SW compile flow with quick turnaround.
- Data can be streamed directly from input to the AI kernels for processing.

