

IFAST WP4 – Task 4.4:

Large scale Carbide-Carbon Materials for multipurpose applications

Open Steering Committee 16th November 2021

F. Carra (CERN)

With contributions from C. Accettura, J. Guardia, C. Gutierrez and S. Rivera

IFAST

Task 4.4 – Objectives and Participants

- Large scale Carbide-Carbon Materials for multipurpose applications (M1 M48)
 - Promote the use of carbide-carbon materials (CCM) in future particle physics facilities and open up the market to commercial applications
 - Thermal conductivity 2-3 times higher than Cu! Stronger, low density

Task 4.4 – Deliverables and Budget

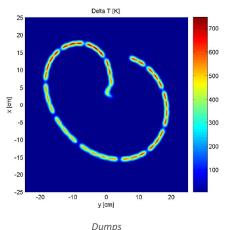
Milestone/Delivera ble Number	Title	Lead beneficiary	Туре	Dissemination level	Due Date (in months)
MS14	Evaluation of a CCM alternative to Molybdenum- Graphite	CERN	Report	Public	16
D4.4	Production of large-size CCM plates	CERN	Demonstrator	Public	24

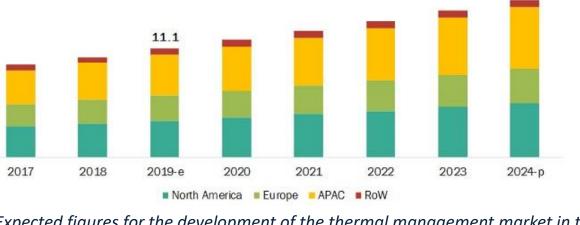
D4.4 description

• Produce two large CCM plates (cross section >400 cm²) in a single sintering cycle

Beneficiary short name	Person- months	Monthly personnel cost	Personnel costs	Travel	Equipment and consumables	Other direct costs	Sub- contracting	Material direct costs	Total direct costs	Total indirect costs	Total costs (direct + indirect)	EC requested funding
CERN	3.0	8,000.00	24,000.00	16,000.00	20,000.00	10,000.00		46,000.00	70,000.00	17,500.00	87,500.00	35,000.00
Nanoker	10.0	3,500.00	35,000.00	3,000.00	95,000.00			98,000.00	133,000.00	33,250.00	166,250.00	85,000.00
Total	13.0		59,000.00	19,000.00	115,000.00	10,000.00	0.00	144,000.00	203,000.00	50,750.00	253,750.00	120,000.00

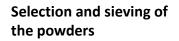
Task 4.4 – Motivation


- Increasing worldwide request for thermal management materials (high thermal diffusivity and specific heat, low density)
- **Cost still high**: CCM are limited to high-end applications (nuclear energy, particle physics, aerospace, ...)
- In particle physics: very interesting for beam-intercepting devices and instrumentation


Targets

Beam wire scanners

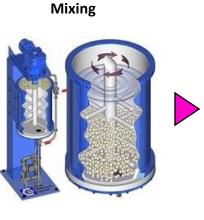
Collimators


Thermal Management Material & Device Market, By Region (USD Billion)

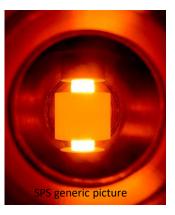
Expected figures for the development of the thermal management market in the next years, source: <u>https://www.marketsandmarkets.com/Market-Reports/thermal-management-market-155049228.html</u>

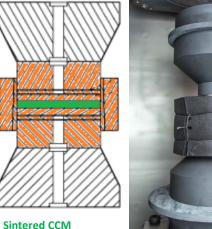
Federico Carra – I.FAST Open Steering Committee, 16 November 2021

16.2


Task 4.4 – CCM Production Cycle

Preparation of the desired composition

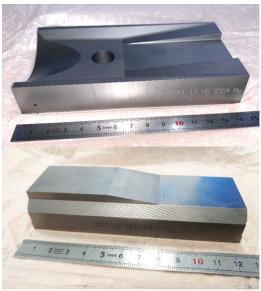

Green body preparation


Spark Plasma Sintering (SPS) >25 MPa, >2600 °C

Single-use mould

elements (graphite)

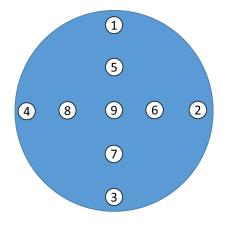
FAST



Stress relieving thermal treatment 0

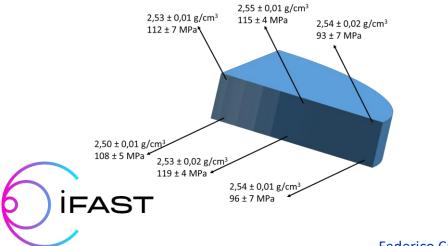
MPa, >2400 °C

Machining of the pieces



Federico Carra – I.FAST Open Steering Committee, 16 November 2021

Task 4.4 – Ongoing activities


Molybdenum-Graphite (sintered at 2640°C)

2 plates produced with 230 mm Diameter (2x bigger section than before IFAST)

Disk (230 mm diameter)	Density (g/cm ³)	Electrical Conductivity (Mean values on each side) (MS/m)
Plate #1 (p=26 MPa)	2,53	0,6 - 0,63
Plate #2 (p=40 MPa)	2,60	0,65 – 0,68
Specification	2,3 ÷2,6	>0,8

Lower electrical conductivity values than in the 174 mm diameter disks

Pre-compaction of the green powder:

Maximum Applied Force Uniaxial Hydraulic Press ~ 900 kN

- 170 mm $\emptyset \rightarrow$ 40 MPa \rightarrow 2,00 g/cm³
- 230 mm $\emptyset \rightarrow$ 21 MPa \rightarrow 1,65 g/cm³

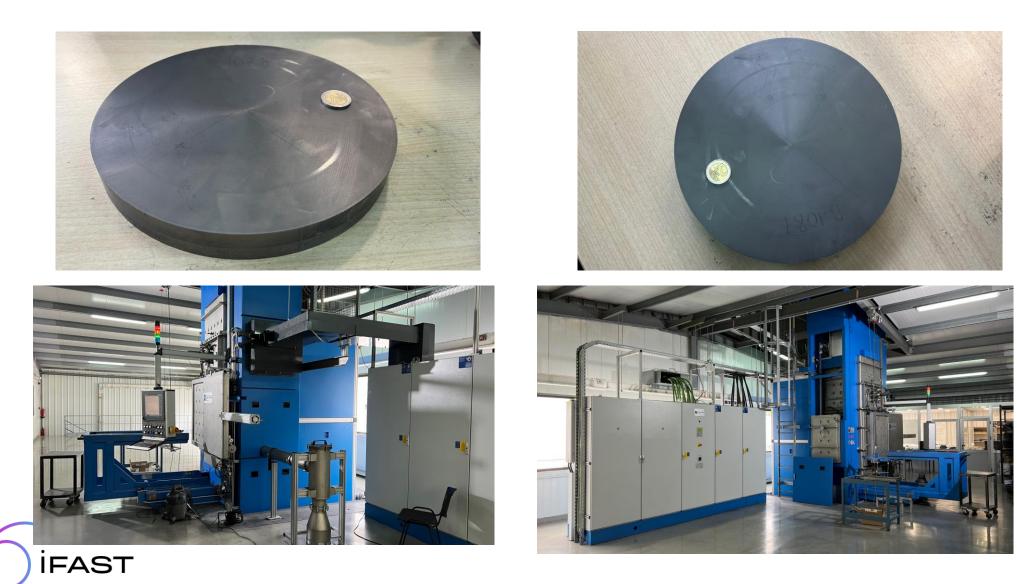
Next: increase the metal content, together with the higher pressure

Task 4.4 – Ongoing activities

Chromium-Graphite (sintered at 2000°C – 1.3x lower T)

1 plate produced with 170 mm Diameter

Disk (170 mm diameter)	Density (g/cm ³)	Electrical Conductivity (MS/m)
Plate #1	2,30	1,00 - 1,07
Specification	2,3 ÷2,6	>0,8


Next steps:

FAST

- Thermomechanical characterization at CERN
- Production of 170 mm diameter, 2 disks per cycle
- Upscale to 230 mm diameter, 1 disk per cycle
- Upscale to 230 mm diameter, 2 disk in one cycle

Reusable Mold and Parts → Important Cost Reduction

Task 4.4 – Ongoing activities

Federico Carra – I.FAST Open Steering Committee, 16 November 2021

Task 4.4 – Conclusions and Next Steps

- Carbide-Carbon Materials are of great interest because of their exceptional thermal transport properties
- WP4.4 aims at reducing the production costs and increasing the available component size, in order to **promote their use in industry and research**
- CERN and Nanoker working at an upscaling of the blank size and at a reduction of the production temperature
- **Positive results** have already been obtained in both directions in the first 6 months of the project
- More tests are foreseen in the coming weeks to optimize the thermophysical properties of the material

İFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.