

## iFAST Open Steering Committee, Nov 16, 2021

Mike Seidel, PSI/EPFL

# WP11 Overview

task 1: Sustainable Concepts for RIs: networking, workshops on selected topics deliverable: report

- 1) System Efficiency of Accelerator Concepts (N.Catalan Lasheras, CERN)
- 2) Key Technologies and Components for High Efficiency (C.Martins ESS)
- 3) Cross Linking Accelerator R&D with Industrial Approaches (P.Spiller GSI)
- 4) Ecological Concepts (D. Voelker DESY)

#### task 2: High Efficiency Klystron (O.Brunner CERN, THALES, ULANC)

- deliverable: industrial prototype
- replacing klystrons in LHC

task 3: Permanent Combined Function Magnets for Light Sources (B.Shepherd, UKRI, DLS, KYMA, DESY)

- deliverable: magnet prototype, applicable for Diamond upgrade, PETRA-4
- several advantages of permanent magnets, not just power consumption

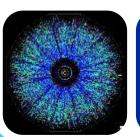


# Task 1.1: System Efficiency of Accelerator Concepts

Nuria Catalan Lasheras (CERN) overtook from Erk Jensen (CERN)

- Workshop on Efficient RF Sources to be held the first week of July 2022 in Switzerland (TBC).
- Around 50 participants expected
- aim of the workshop and rough program (still under discussion)
  - Set the RF sources in perspective against the global accelerator energy consumption
  - $\circ$   $\,$  world efforts towards system efficiency for  $\,$ 
    - $\circ$  Pulse generation
    - $\circ$  Klystrons
    - Solid state amplifiers
    - Magnetrons
    - o IOTs
    - $\circ$  Distribution system losses
    - 0 ...




# Build a power usage model for a "generic" accelerator.

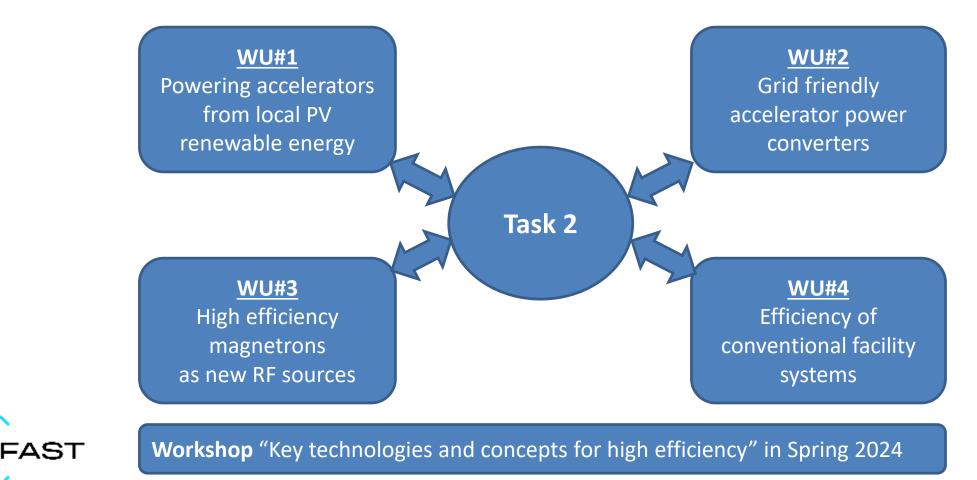


- differentiate energy consumption per system: (RF power, Cryogenics, Magnets, Cooling and ventilation, other infrastructure)
- Mine data from existing machines and different operating conditions



- Design a parametric model based on realistic efficiency of (AC/CD conversion, Klystron, cryogenics, etc)
- Systems weight will depend on actual accelerator (Linac, synchrotron, RCS, ERL, etc)




FAST

- Final figure of merit is different depending on the application (Beam power on target, luminosity, synchrotron radiation power, etc)
- Optimization can be done for future machines

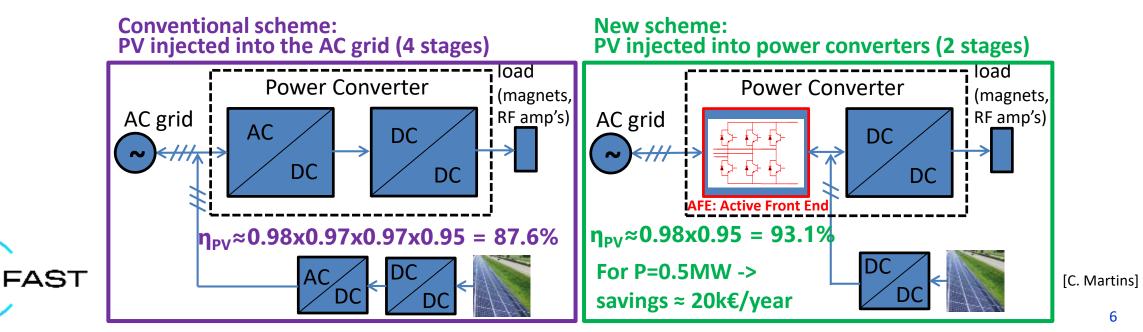
[Nuria Catalan Lasheras]

## Task 1.2: Key Technologies and Components for High Efficiency (Carlos Martins, ESS)

- Assess the relevance of particular technologies in typical applications
- Identify important R&D directions together with their challenges and opportunities
- Quantitative assessment of the achievable gains for certain technologies
- Review of state of the art and best practices from different accelerator facilities



## **Powering accelerators from local PV renewable energy**


#### **Concept:**

- Install PV panels near accelerators' "wasted land";
- Connect them to main power converters for accelerator magnets or RF amplifiers, using high efficiency DC/DC converters;
- AFE's can redirect the PV energy back to the AC grid when accelerator not running;
- Up to 15-20% renewable energy utilization possible with no transmission losses and high conversion efficiency;
- Lower capital cost & lower payback time;

#### **Objectives:**

- Feasibility study for ESS case: up-to 2MW installed PV injected into the Linac RF klystron modulators;
- MSc thesis with Lund University (starting Feb. 2022);





### Task 1.3: Cross Linking of Accelerator Facilities and Technologies with Industrial Approaches (GSI, P.Spiller)

Fostering "Dual-Use": Developments for Accelerators applied to Energy Systems. Strengthening the communication with industry to evaluate potential collaborations, support developments and to attract interest.

| Accelerator Technologies                                                                                                                                                              | Energy Systems                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development of (intermediate) <b>energy storage technologies</b> (e.g. fly wheels, capacitive or s.c. magnetic energy storage systems) for e.g. cheaper accelerator power converters. | Technologies for minimizing power grid interaction<br>(disturbance) by energy intensive industries. Vice versa:<br>Increasing independence of accelerator facilities and energy<br>intensive industry from power grid fluctuations. |
| Development of a improved <b>HTS tapes and new s.c. cables</b> for next generation of fast ramped s.c. magnets.                                                                       | Application of new HTS tapes in new s.c. cables for s.c. transmission lines or s.c. magnetic energy storage.                                                                                                                        |
| Protection of superconducting magnet strings by <b>DC circuit breakers</b> .                                                                                                          | Protection of superconducting energy systems, e.g. s.c. transmission lines, s.c. magnetic energy storage or photo voltaic energy systems.                                                                                           |
| Development of diagnostic <b>technology for detecting defects</b> (synthetic TDR) in s.c. bus bar systems and in long accelerator cables.                                             | Detection of defects in km long underground power cables.                                                                                                                                                                           |
| <b>Control of electrical power</b> of large IT infrastructures in reasearch centers and operation of cryogenic plants                                                                 | Provision of controlling power/balancing power for damping fast fluctuations in power grids.                                                                                                                                        |
| ) ifast                                                                                                                                                                               |                                                                                                                                                                                                                                     |

## **HTS Energy Applications Study (GSI)**

- GSI and IEE have been investigating use cases for HTS CORT cables (from WP8.6) beyond the the use in fastramped magnets
- The two-step study is ongoing:

FAST

- A broad "brainstorming" has been conducted based on available literature
- Investigation of 1-2 applications in detail

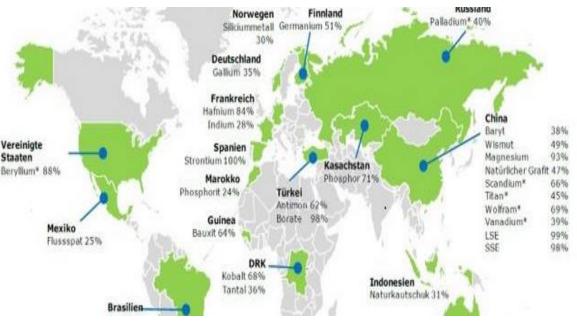
Applications have been split into broad categories:

- Science
- Energy
- Industry
- Transport
- Medicine

As a first indication for market potential, applications have been evaluated by their estimated conductor requirements

| Application                                      | Application field | Tape use in<br>typical single<br>unit [km] |      | Potential fo<br>HTS tape use<br>[km/year] |
|--------------------------------------------------|-------------------|--------------------------------------------|------|-------------------------------------------|
| Current Leads/Magnet Feeders                     | Science           | 0.1                                        | 100  | 10                                        |
| Fault Current Limiters                           | Sciece/Energy     | 10                                         | 20   | 200                                       |
| High Field/Fusion                                | Energy            | 100000                                     | 0.25 | 25000                                     |
| Induction Billet Heaters/ Magnetic<br>Separation | Industry          | 10                                         | 5    | 50                                        |
| Magnetic Energy Storage                          | Energy            | 200                                        | 1    | 200                                       |
| Particle Accelerators/ Particle Therapy          | Science, Medicine | 10                                         | 100  | 1000                                      |
| Power transmission cables                        | Energy            | 100                                        | 5    | 500                                       |
| Rotating Machines                                | Energy, Transport | 20                                         | 50   | 1000                                      |
| Transformers                                     | Energy            | 5                                          | 5    | 25                                        |
| Wireless Energy Transfer                         | Transport         | 5                                          | 100? | 500?                                      |
| MRI/NMR                                          | Medicine          | 50                                         | 100  | 5000                                      |

[P. Spiller, T.Winkler]


# Task 1.4: Ecological Concepts (DESY, Denise Voelker)

Focus 1: Materials for high-tech components

- i.e. rare earths for permanent magnets (PM)
- Pro: PM save energy
- Contra: rare earths needed for PM mined and processed under destructive social and environmental conditions
- no alternative sources or certified mining and processing available
- industry has same challenge ahead (i.e. wind power stations)
- Idea: combine forces and push for EU/global certification system
- → Currently investigation on social and environmental impacts of mining and processing for the specific materials needed for PM in close cooperation with NGOs
- $\rightarrow$  Next step: approach industry
- → Workshop planned for Nov/Dec 2022

#### Source countries for rare elements

https://www.springerprofessional.de/rohstoffe/ressourceneinsatz/eu-willkritische-rohstoffe-fuer-die-industrie-sichern/18628620



## Task 1.4: Ecological Concepts (DESY, Denise Voelker)

- Focus 2: Life cycle management
  - Consider entire life cycle of machines and components meaning construction running deconstruction
  - lower operation cost justify higher investment cost, not to forget costs for decommissioning
  - Currently questions of deconstruction are not enough considered in accelerator development
  - To lose high level materials is not only an ecological but also an economical problem
  - Idea: find best practice for recycling of these materials and save money
  - implement life cycle management already in planning phase of new RIs
  - → Currently identification and contact of experts on technical life cycle thinking
  - $\rightarrow$  Workshop planned for Nov/Dec 2022

**Example:** Old shielding stones being shredded and used again for foundation of new buildings on campus (DESY)



# Appendix: Milestones & Deliverables

| Schedule of relevant Milestones   |                                                                                       |                  |                            |                                                |                                                                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------|------------------|----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Milestone<br>number <sup>18</sup> | Milestone title                                                                       | Lead beneficiary | Duc<br>Date (in<br>months) | Means of verification                          |                                                                                                 |
| MS50                              | Workshop on energy for<br>sustainable science at research<br>infrastructures, at ESRF | 41 - PSI         | 6                          | Web site (task 11.1)                           | ESSRI Grenoble, J.P. Revol et al, prep ongoing!<br>17/18 March , 2022; [Link, reserve the date] |
| M\$51                             | Workshop on efficient RF<br>sources                                                   | 1 - CERN         | 13                         | Web site (task 11.1)                           | July 2022                                                                                       |
| MS52                              | Workshop on efficient<br>magnet- and RF power<br>supplies                             | 2 - ESS          | 22                         | Web site (task 11.1)                           | April 2023                                                                                      |
| MS53                              | Workshop on sustainable<br>materials and lifecycle<br>management for accelerators     | 12 - DESY        | 18                         | Web site (task 11.1)                           | December 2022                                                                                   |
| MS54                              | Workshop on industrial<br>approaches for sustainable<br>accelerators                  | 13 - GSI         | 42                         | Web site (task 11.1)                           | December 2024                                                                                   |
| MS55                              | Design review                                                                         | 1 - CERN         | 12                         | Web site (task 11.2)                           | June 2022                                                                                       |
| M856                              | Magnets constructed and<br>tested                                                     | 25 - KYMA        | 25                         | Magnetic measurements<br>completed (task 11.3) | July 2023                                                                                       |

| Deliverables related to WP11                                                                                                                                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| D11.1: Sustainable Accelerators Report.<br>Report on strategies to improve sustainability and reduce environmental impact of<br>accelerators.                                                          | M45 |
| <b>D11.2:</b> Klystron prototype completed and validated.<br>Report on the construction of the klystron prototype and on the test results.                                                             |     |
| <b>D11.3:</b> Prototype adjustable PM quadrupole and combined function magnets.<br><i>Two prototype PM-based magnets one quadrupole and one combined-function magnet designed, built and measured.</i> | M28 |

