
#### 16-11-2021 / I.FAST Open Steering Committee Meeting

Daniel Gavela / Ciemat



# Proposed Ion Source Concept





Expected advantages of RF ion source versus Penning:

- Lower cathode wear (no sputtering). Less maintenance time, irradiation and cost.
- Possibly better efficiency of producing H<sup>-</sup>, due to lower electron energies, leading to possible reduction of H<sub>2</sub> flow needed and better vacuum in the cyclotron.
- No high voltage



**FAST** Daniel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas



# Project Objectives

- Design & manufacture a RF based ion source to replace current internal Penning ion sources in cyclotrons
- Experimental characterization (plasma & beam) of the RF based ion source



niel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021

Centro de Investigac Energéticas, Medioamb

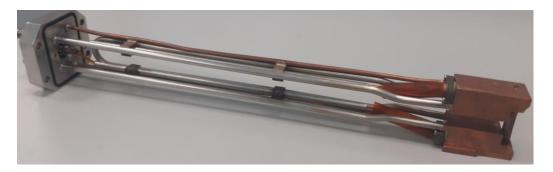


# Working Schedule

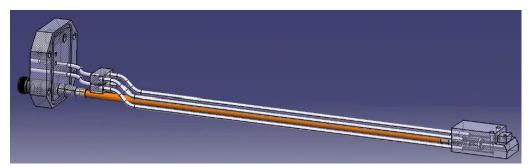
|                                   | M1 | M2 | M3 | M4       | M5 | M6 | M7    | M8    | M9   | M10 | M11 | M12 | M13 | M14 | M15 | M16 | M17 | M18 | M19 | M20 | M21 | M22 | M23 | M24 |
|-----------------------------------|----|----|----|----------|----|----|-------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| WP1                               |    |    |    |          |    | R  | eport | t ma  | de   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Study of cyclotron market context |    |    |    | $\leq =$ |    |    | nder  |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Internal ion sources benchmarking |    |    |    |          |    |    | nuer  | revis | SION |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Project IP definition             |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| WP2                               |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Design specification              |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| RF simulations                    |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Thermomechanical simulations      |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 3D modelling and tooling design   |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| WP3                               |    |    |    |          |    |    |       |       |      | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ion source manufacturing          |    |    |    |          |    |    |       |       | ngoi | ng  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| RF system definition              |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| RF power device development       |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ancilliary systems purchase       |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| WP4                               |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Assembly and integration          |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Experimental plan definition      |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Test and first plasma ignition    |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| MILESTONE 1 (Plasma ignition)     |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| WP5                               |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ion source characterization       |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Long term studies                 |    |    |    |          |    |    |       |       | _    | _   |     |     |     | _   | _   |     |     | _   |     |     |     |     |     |     |
| Discussion of results             |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Report writing                    |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| DELIVERABLE 1 (Report)            |    |    |    |          |    |    |       |       |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

iFAST Daniel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021






Centro de Investigaciones Energiticas, Medicambientales y Tecnológicas




### Ion Source Proposal. Design spec

- Capacitively coupled plasma at high frequency
- $\lambda/4$  Cavity resonator to enhance E field for plasma ignition
- Frequency in the 2.4-2.5 GHz range:
  - $\lambda$  = 12.5 12 cm, compatible with current ion sources dimensions
  - Readily available power generators
- Retrofit into existing cyclotrons



AMIT cyclotron ion source



Provisional Proposed ion source (only half of it)



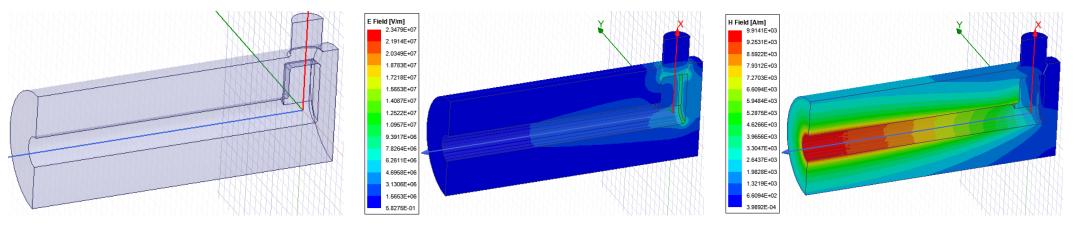
**FAST** Daniel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



# RF simulations status

- Initial basic cavity design parameters establishment. Length, inner volume, stem dimensions ...
- Coupling study
- Cavity design optimization




Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021





# Initial design



Dimensions:

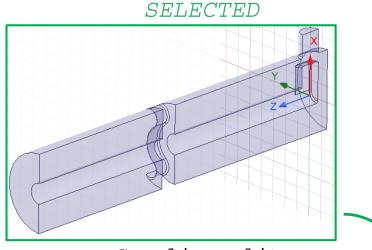
- Cavity inner diameter: 10 mm
- Stem diameter: 2.6 mm
- Stem length: 24.3 mm

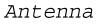
Operating parameters:

- Resonant frequency = 2,428 GHz
- $Q_0 = 1877$
- Tip voltage: 5.88 kV
- Power loss: 100 W



**FAST** Daniel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST


Open Steering Committee Meeting November 2021


Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Ciemot

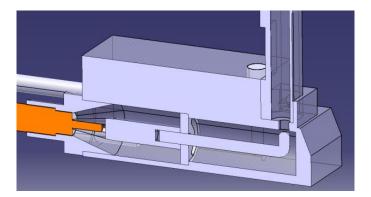


# Coupling study





Coupling slit

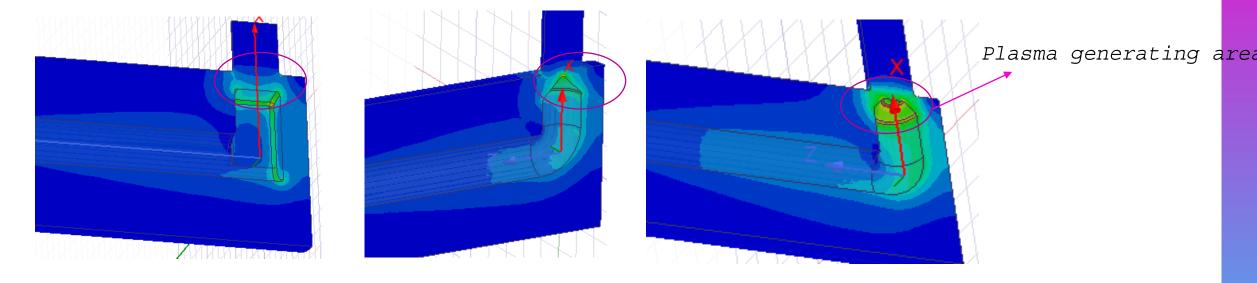

All of them can work from RF point of view, allowing for the required matching.

Coupling slit was selected due to:

Loop

- Easy to manufacture
- Appropiate with the size of the cavity
- Fits specially well in the body of the source, based on AMIT cyclotron
- Preliminary detailed design was done

FASTDaniel Gavela - Internal RF Ion Source For Cyclotrons - I.FASTOpen Steering Committee Meeting November 2021






Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas



# Cavity design optimization



| Initial design | Step 2                   | Step 3       |
|----------------|--------------------------|--------------|
| $Q_0 = 1877$   | $Q_0 = 1884$             | $Q_0 = 1914$ |
| 5,88 kV        | 6,08 kV                  | 6,18 kV      |
| (all           | data for 100 W RF power) |              |



**İFAST** Daniel Gavela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



# Next immediate steps

- Tolerance analysis for manufacturing
- Thermomechanical simulations
- Finish RF power generation system



avela - Internal RF Ion Source For Cyclotrons - I.FAST Open Steering Committee Meeting November 2021







# Thanks



This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.