

IFAST Prototyping Activity **REX**

Resonant **EX**traction Improvement

Work Package 5 Task 3

Steering Committee meeting / 16th Nov. 2021

Peter Forck & Rahul Singh (GSI) on behalf of the consortium

Challenges for slow Extraction form Synchrotrons

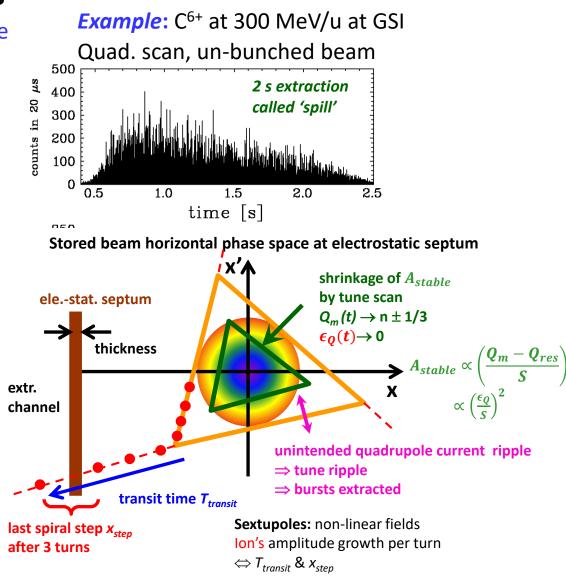
Slow extraction: Gentle excitation of a beam third order resonance

Beam physics: Extraction as 'slow losses' for 1 ... 10 s

- Particle crosses stability boarder sequentially
- Exponential amplitude growth during 'transit time'
 - $\approx 50 \dots 1000$ turns reaching septum and is extracted

Problem: Sensitivity to any unintended resonance condition, e.g.:

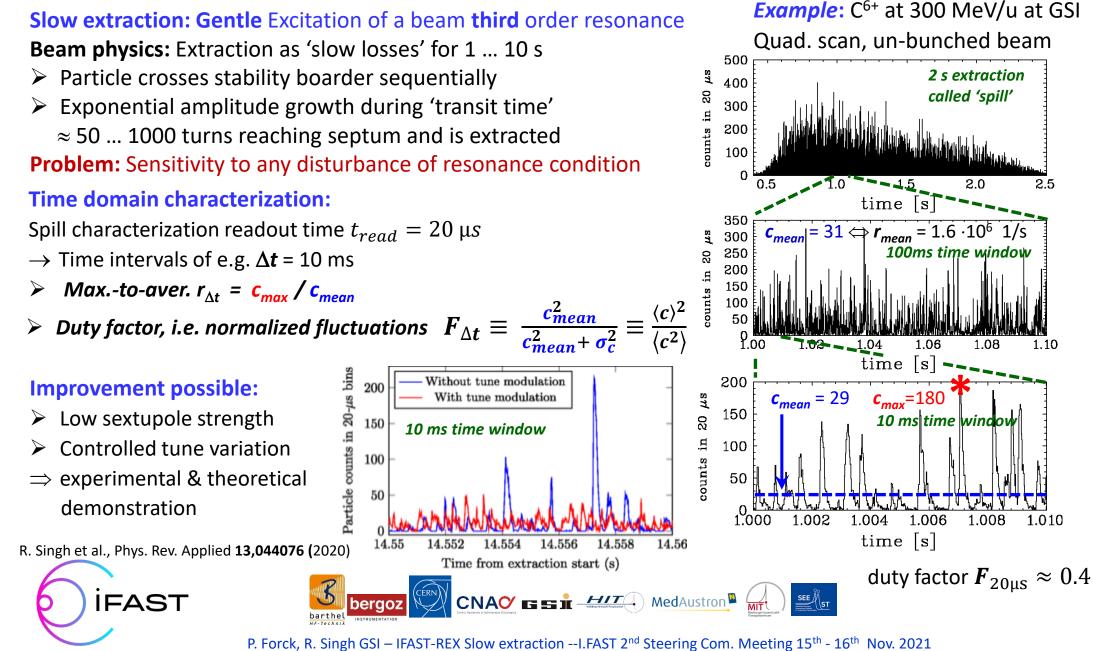
- Change of tune: unintended quadrupole current ripple
- Change of excitation strength: sextupole current ripple
- Stochastic amplitude excitation of 'knock-out' extraction
 Mitigation research within IFAST-REX:


Beam physics: Methods for beam sensitivity reduction Proposal of non-standard excitation methods

 \Rightarrow Extensive simulation of extraction process

Technical installations: Improved power supplier for magnets Improved transverse particle excitation for knock-out extraction

 \Rightarrow Non-standard power converter and rf-amplifier control **Validation:** Experimental validation at all facilities


Tailored improvements for IFAST-REX participants

Example for 'Spill Micro-Structure' for a coasting Beam

3

IFAST-REX: Survey to compare different Facilities

Performed by MedAustron (Florian Kühteubl et al.)

Questionnaire of 3 pages related to:

- General beam parameters \Rightarrow appropriate scaling
- > Type of slow extraction \Rightarrow comparison of different methods
- > Typical quality and its measurement \Rightarrow experiences of improvements Comparison of achievements including appropriate scaling e.g. trans. emittance

Status:

- > Answers from **all** participants
- **Evaluation finished**

\cap	IFAST
	IFASI
-	1

iFAST-REX

$\langle \rangle$		
ropean mmissio	n	Horizon 2020 European Union funding for Research & Innovatio

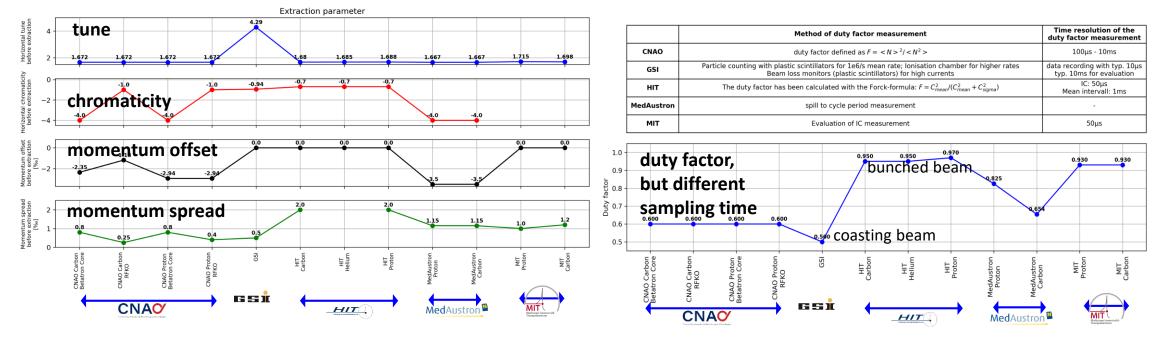
iFAS	ST-REX			
		Efficiency & Quality		
Slow Extra	iction Survey	Number of particles/spill in the extraction line:	Min: 1e4/s	Max: 1e11/s
Please fill out the survey separately for all available extraction methods and/or particle types! In case of any questions or uncertainties, please contact Florian Kühteubl (florian.kuehteubl@medaustron.at).			for U73+ and 1e10/s for protons). A cryogenic current comparator is also under	
		Extraction efficiency [%]: w.r.t the number of particles at flat top		
General		Beam losses at the septum [%]:	10-30% (depending on beam emittance)	
Institution:	GSI	w.r.t the number of particles at flat top	Turical values O.F.	
Machine:	SIS-18		Typical value: 0.5	
Circumference of the accelerator [m]:		Duty factor:	Method of measurement: Particle	e counting with plastic scri
Time resolut		Time resolution: typ. 10) ms for evaluation; data re	

Beam parameter			
Particle type:	protons and all ions until Uranium		
Energy [MeV/u]:	Min: 11.4		Max: 2000 (protons)
Revolution frequency [MHz]:	Min: 0.2		Max: 1.2 (dep. q/m)
Number of particles at flat top	Min: 1e5		Max: 1e11
+ corresponding energy [MeV/u]:	Energy: 300 - 20	000	Energy: 300 - 2000
How is the number of particles/current circulating in the ring measured? What is the sensitivity of the measurement?	DCCT : Maximum bandwidth is 20 kHz. Sensitivity of measurement is approximately 1 uA. (number of particles for 1 µA depend on charge-to-mass ratio from H+ to U73+)		hately 1 uA. A depend on
	Horizontal:	30 mm-mr	ad
	Vertical:	5 mm-mrad	
Normalized beam emittance of the circulating beam before extraction [π mm mrad]:	-	synchrotro	profile monitor inside n, vertical profile with asurement in transfer
			I bisendene landeter te faatstelen februarjee

Notes & Comments
 Bunched beam extraction and tune wobbling are used for mitigation of spill modulation caused due to power supply ripples A slow multicyle feedbacksystem is used to control the shape of macropulse. The output of detectors over multiple cycles are used to correct the macropulse.

IFAST-REX: Survey to compare different Facilities

Performed by MedAustron (Florian Kühteubl et al.)


Results from questionnaire

FAST

Basic synchrotron and bam parameter collected General beam parameters

Next step: Data files from all facilities

- \Rightarrow comparison of spill quality under comparable conditions
- ⇒ appropriate scaling, e.g. duty factor for same sampling time, transit time: T_{tr} [turns] & T_{tr} / T_{syn} , long.-trans.: $\frac{\Delta p}{p} \leftrightarrow \frac{\Delta p}{p} / \epsilon_{\chi}$

IFAST-REX Working Group Members for initial Phase

 1) Development and integration of high dynamic range current measurement device: Bergoz: Frank Stulle CERN: Diogo Alves, Marek Gasior CNAO: GSI: Rahul Singh, Andrzej Stafiniak HIT: MedAustron: Claus Schmitzer MIT: SEEIIST: Mariusz Sapinski (resigned) ⇒ Elena Benedetto 	 2) Specification and contribution for KO signal generation, exciter and amplifier design: Barthel: Matthias Barthel CERN: CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, Al.Mereghetti GSI: Rahul Singh HIT: Eike Feldmeier MedAustron: Claus Schmitzer, Florian Kühteubl, Dale Prokopovich MIT: Tobias Blumenschein, Andre Rajan SEEIIST: Elena Benedetto
 3) Slow extraction simulations: CERN: Verna Kain, Matt. Fraser, Francesca Velotti, Paolo Arrutia CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, Al Mereghetti GSI: Peter Forck, Stefan Sorge HIT:: Cristopher Cortes, Michael Galsonska MedAustron: Florian Kühteubl, Alexander Wastl, Dale Prokopovich MIT: SEEIIST: Elena Benedetto, Rebecca Tayor 	 4) Spill detector development and analysis: CERN: Federico Roncarolo (maybe Matthew Fraser) CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, A. Mereghetti GSI: Peter Forck, Plamen Boutachkov HIT: Andreas Peters, Christian Schömers MedAustron: Dale Prokopovich MIT: SEEIIST: Mariusz Sapinski (resigned) ⇒ Elena Benedetto

IFAST-REX Working Group 1: Specification for power Supplier Stabilization

Performed by company Bergoz (Frank Stulle et al.)

Accelerator physics: Spill fluctuation main caused by quadrupole current ripple; experimentally confirmed Topic: Development and integration of high dynamic range current measurement device

Goal: Production of large dynamic range AC current measurement device by company Bergoz

Methodology: Detailed specification table produced as steered by GSI and Bergoz

Status: Agreement on most items for GSI quadrupoles pending: spec. other facilities, but comparable Challenges: AC-component at $I_{AC,min}/I_{DC} = 10^{-4}$ level on strong DC offset

Development: First design consideration by Bergoz

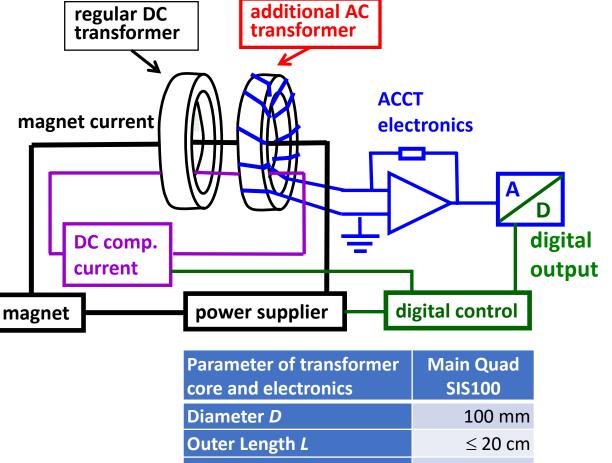
Parameter for <u>additional</u> control	Main Quad SIS100
DC current min. I _{DC,min} & max. I _{DC,max}	1 kA & 11 kA
DC current polarity	pos, neg
DC current ramp gradient r _I	6000 A/s
Ramp time Δt	0.1 1 s
AC modulation rel. min. $I_{AC,min}/I_{DC}$ & max. $I_{AC,max}/I_{DC}$	10-4 & 10-2
AC modulation absolute min. I _{AC,min} max. I _{AC,max}	0.1 & 100 A
Measurement duration <i>t_{tot}</i>	20 s
Measurement bandwidth $f_{\min} \dots f_{\max}$	10 Hz 40 kHz
Measurement dynamic range total	>120 dB
Measurement dynamic range per range setting	>100 dB
Measurement resolution flat-top relative $\sigma_{\text{I,FT}}/I_{\text{DC}}$	10-7
Measurement uncertainty <i>u</i>	0.1% - 1 %
Temperature coefficient c_{T}	NN %/K

IFAST-REX Working Group 1: Design for AC Current Measurement

Performed by company Bergoz (Frank Stulle)

Topic: Development and integration of

high dynamic range current measurement device Novelty: Additional control of power supplier


Sensitivity: $I_{AC} / I_{DC} < 10^{-5}$

Development: First layout by Bergoz as **novel** device

Present achievements:

- Layout of AC transformer
- Large bandwidth 1 Hz ... 40 kHz achieved
- Integration of DC trans. compensation winding to AC transformer to prevent for core suturation
- Under considerations:

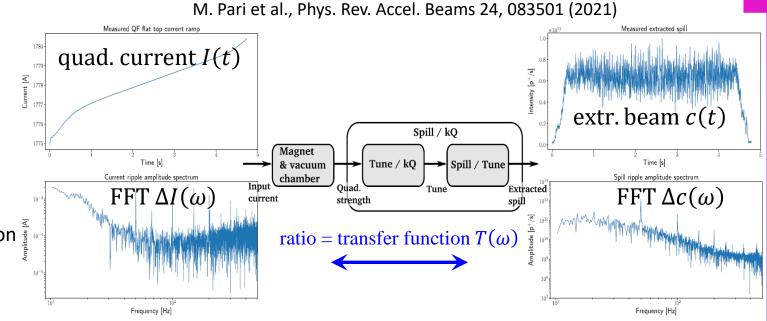
Cross talk AC trans. \leftrightarrow compensation winding

nding Outer Length *L* ≤ 20 cm Outer Width *W* ≤ 20 cm Outer Hight *H* ≤ 20 cm Weight *M* \leq 20 cm Duter Hight *H* \leq 20 cm \leq 20 cm

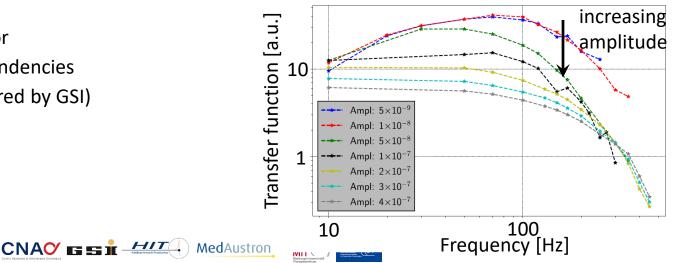
IFAST-REX Working Group 3: Simulation & Experiment

Performed by CERN (M. Pari et al.)

Topic: Modelling of power supplier action to SPS beam Goal: Realistic beam simulations by MADX Methodology: Power supplier action to beam

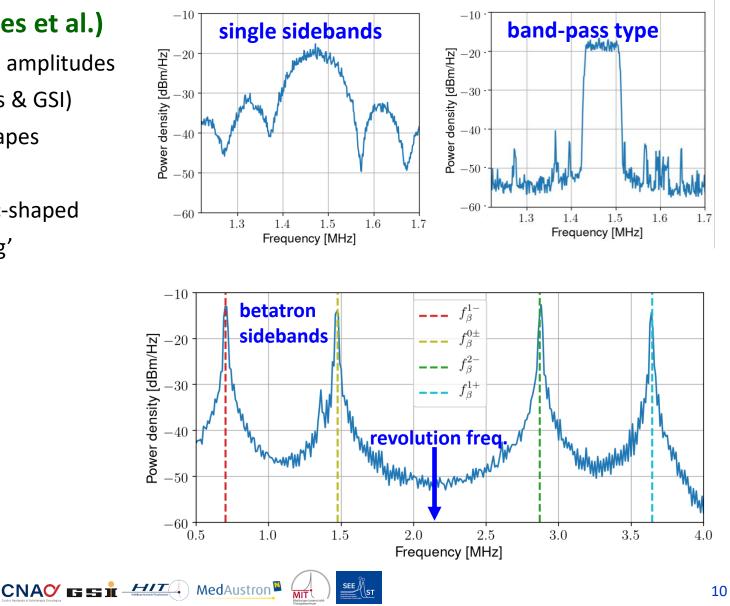

described by transfer function $T(\omega) = \left\| \frac{\Delta c(\omega)}{\Delta I(\omega)} \right\|$

with $\Delta c(\omega)$ is Fourier trans. of extracted counts variation and $\Delta I(\omega)$ is Fourier trans. of power supplier variation using experimental data


Results:

- Excellent correspondence to exp. data
- Amplitude dependence i.e. non-linear behavior
- Detailed simulations executed to explain dependencies
- Related to transit time (description e.g. preferred by GSI)
 Status:
- Results published
- Application for other facilities possible

Example: MADX simulation for several frequencies



IFAST-REX Working Group 3: Simulation and Experiment

Performed by HIT (Christopher Cortes et al.)

Knock-out extraction: Excitation of betatron amplitudes
by transverse rf-noise (used at med. facilities & GSI)
Topic: Beam response to different signal shapes
Experiment at HIT:

Traditional: Single band excitation with sinc-shaped noise function by 'random phase shift keying'Novel: Multi band excitation with flat bands

IFAST-REX Working Group 3: Simulation and Experiment

Performed by HIT (Christopher Cortes et al.)

Knock-out extraction: Excitation of betatron amplitudesby transverse rf-noise (used at med. facilities & GSI)Topic: Beam response to different signal shapes

Experimental results at HIT:

- Significant increase of beam quality by multi-band
- Lower influence by noise type
- Technically feasible method of excitation
- Restricted to 4 sidebands due to amplifier power

Micro-structure quality measure \rightarrow duty factor:

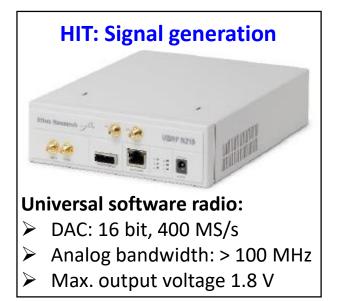
 $F_{\Delta t} = \frac{\langle c \rangle^2}{\langle c \rangle^2 + \langle c^2 \rangle} \equiv \frac{\mu^2}{\mu^2 + \sigma^2}$ i.e. inverse normalized fluctuations at HIT readout time $\Delta t = 50 \ \mu s$ (e.g. at GSI $\Delta t = 10 \ \mu s$)

Beam: C⁶⁺ 124 MeV/u, 8e7 ions, tune $Q_x = 1.68$ Detector: Ionization chamber, 50 µs readout

IFAST-REX Working Group 2: Knock-out Extraction Signal Generation and Amplification

Performed by HIT (Eike Feldmeier et al.) & company Barthel

Knock-out extraction: Excitation of betatron amplitudes by transverse rf-noise (used at med. facilities & GSI) Topic: Technical realization for knock-out extr. amplifier


Digital signal generation by 'Software Radio':

- Performant commercial DAC board
- Control by freeware 'GNU Radio'
- Additional variable gain amplifier required
- \Rightarrow matched solution with good flexibility

Power amplifier (beneficiary company Barthel):

- Bandwidth: 0.1 ... 20 MHz (or higher)
- > Power: $1 \text{ kW}@50\Omega$ or higher for multi-bands
- Matching network required, efficient voltage generation
- \Rightarrow rigorous requirements
- Status: First design considerations,

waiting for more detailed specifications

SEE

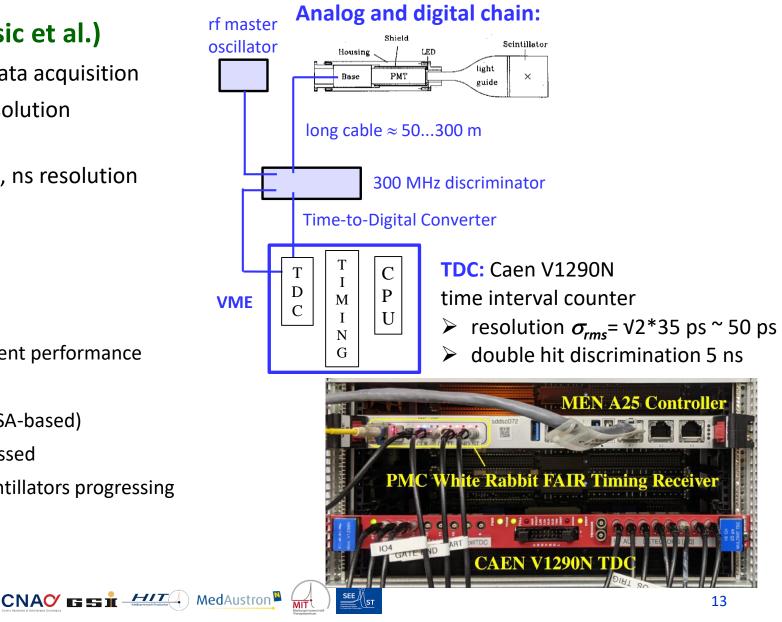
IFAST-REX Working Group 4: Spill Detector Development and Analysis

Performed by GSI (R. Singh, T. Milosic et al.)

Topic: Fast particle detectors and versatile data acquisition

- **Goal:** > Spill characterization down to μ s resolution
 - For bunched beam extr.:

arrival time at detector = 'bunches' , ns resolution


High count rate

FAST

- Versatile data acquisition
- Usable at all facilities

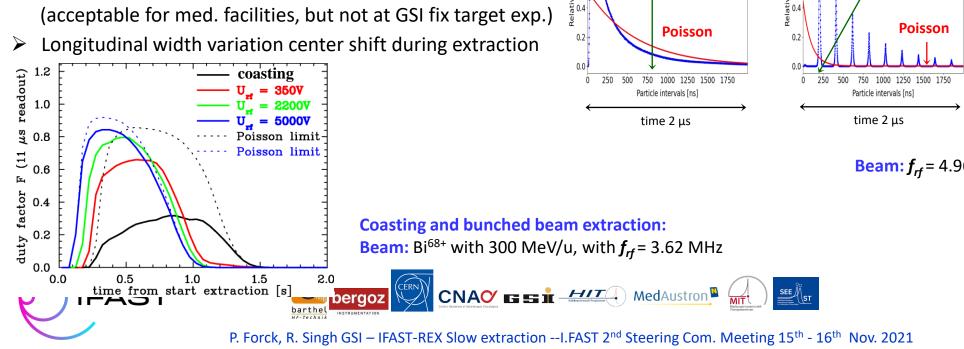
Status:

- TDC-based DAQ operational at GSI with excellent performance
- Scaler-based DAQ at GSI must be refurbished
- Presently: Fixed to GSI IT infrastructure (as FESA-based)
- Offline method of data analysis must be discussed
- Further on: Development of fast inorganic scintillators progressing at GSI with superior radiation hardness

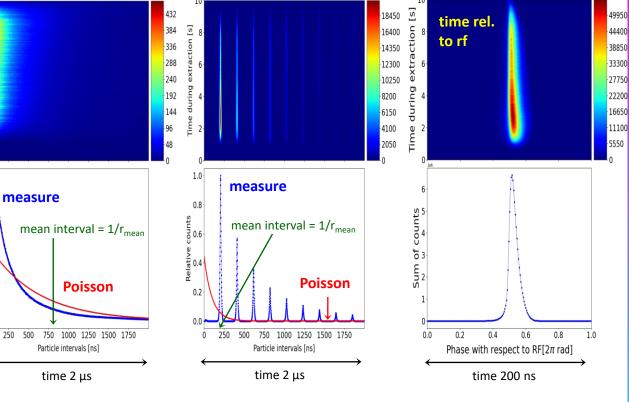
IFAST-REX Working Group 4: Spill detector development and analysis

extraction 10 s

0.6


Coasting beam extraction

Performed by GSI (R. Singh, T. Milosic et al.)


Topic: Fast particle detectors and data acquisition

Results: Measurement of ion arrival versus rf & Ion \leftrightarrow ion time interval:

- Detection with plastic scintillators
- DAQ fulfills all requirements
- Costing beam: Quite 'non-Poisson'
- Bunched beam: wider interval distrib. \Leftrightarrow better duty factor
- Bunched beam: Short 'bunches', $\approx 1/3$ of stored bunch \geq

Bunched beam extraction U_{rf} = 3.1 kV

Beam: *f*_{rf} = 4.96 MHz

IFAST

Conclusion:

- Collaboration established
- Work Group content determined
- WG 1 (novel transformer combination): Significant progress
- WG 2 (knock-out amplifier & control): Technical development started
- WG 3 (simulation & experiment): Various investigations performed
- WG 4 (detectors & DAQ): Progress (but presently DAQ usable at GSI only)
- Coordination should be improved

The valuable work of all collaborators are warmly acknowledged Thank you for your attention

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.