

I-FAST steering committee: 16<sup>th</sup> November 2021

Riccardo Bartolini, DESY

### WP7: High brightness accelerator for light sources

#### Scope:

WP7 pursues the R&D on new technical solutions for the design and construction of accelerator-based light sources, exceeding the performance of present machines. The research embraces both storage ring based synchrotron light sources and free electron laser driven by Linacs.

**Task 7.1**: Coordination and communication (R. Bartolini, DESY)

**Beneficiaries: DESY** 

**Task 7.2**: Enabling technologies for ultralow emittance rings (A. Mochihashi, KIT)

Beneficiaries: DESY, CERN, SOLEIL, DLS, INFN, KIT, PSI, KYMA

Task 7.3: Variable dipole for the upgrade of the ELETTRA storage ring (Y. Papaphilippou, CERN)

Beneficiaries: CERN, CIEMAT, ELETTRA, KYMA

**Task 7.4**: Very high gradient RF gun operating in the C-band RF technology (D. Alesini, INFN)

Beneficiaries: INFN, COMEB, PSI, VDL-ETG

**Task 7.5**: CompactLight prototype accelerating structures (G. D'Auria, ELETTRA)

Beneficiaries: ELETTRA, CERN, INFN, VDL-ETG, COMEB, TMD

NETWORK

**PROTOTYPE** 



### WP7: Milestones and deliverables

| D7.1 | Final report on the development of high                                                               | 7.1 | UOXF           | R   | PU | 48 | MS25 | MS25 General workshop on Task7.2 activity summary  MS26 Magnet specifications based on optics calculations for ELETTRA. Magnetic and mechanical design including fabrication drawings |     | 42 | Indico page            |
|------|-------------------------------------------------------------------------------------------------------|-----|----------------|-----|----|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------------------------|
| D7.2 | brightness electron beams for light sources Report on enabling technology for ultralow emittance ring | 7.2 | KIT            | R   | PU | 45 | MS26 |                                                                                                                                                                                       |     | 24 | Report                 |
| D7.3 | Longitudinally variable bend prototype fabrication                                                    | 7.3 | CERN           | DEM | PU | 40 | MS27 | Prototype acceptance tests                                                                                                                                                            | 7.3 | 46 | Report                 |
| D7.4 | Mechanical realization and low power RF test of the two RF guns                                       | 7.4 | INFN           | DEM | PU | 38 | MS28 | Electromagnetic and mechanical design of the two guns                                                                                                                                 | 7.4 | 24 | Report                 |
| D7.5 | Construction of the XLS accelerating structure pre-prototype.                                         | 7.5 | ELETTRA-<br>ST | DEM | PU | 24 | MS29 | High-power test stand setup and final results of the high-power tests                                                                                                                 | 7.4 | 46 | Report                 |
| D7.6 | Construction of the XLS accelerating structure full prototype.                                        | 7.5 | ELETTRA-<br>ST | DEM | PU | 36 | MS30 | Construction and RF tests of CompactLight accelerating structure prototype                                                                                                            | 7.5 | 21 | Prototype in operation |

|                                                                      | Year 1                     | Year 2                              | Year 3                              | Year 4               |                      |
|----------------------------------------------------------------------|----------------------------|-------------------------------------|-------------------------------------|----------------------|----------------------|
| Tasks Description                                                    | 1 2 3 4 5 6 7 8 9 10 11 12 | 13 14 15 16 17 18 19 20 21 22 23 24 | 25 26 27 28 29 30 31 32 33 34 35 36 | 37 38 39 40 41 42 43 | 44 45 46 47 48 49 50 |
| WP7 High Brightness Accelerators for light sources                   |                            |                                     |                                     |                      |                      |
| 7,1 Coordination and communication                                   |                            |                                     |                                     |                      | D                    |
| 7,2 Enabling technologies for ultra-low emittance rings              |                            |                                     |                                     | M                    | D                    |
| 7,3 Variable Dipole for the upgrade of the ELETTRA storage ring      |                            | М                                   |                                     | D                    | M                    |
| 7,4 Very high gradient RF Guns operating in the C-band RF technology |                            | M                                   |                                     | D                    | M                    |
| 7,5 CompactLight Prototype Accelerating Structures                   |                            | M D                                 | D                                   |                      |                      |



# Task 7.2: Enabling technologies for ultra low emittance rings (A. Mochihaschi, KIT)

#### Scope:

Strengthening the networking activity in the accelerator community on topics related to the major technological challenges faced in the design, construction and operation of ultra-low emittance rings.

- Monthly regular meetings via zoom (update from facilities, share info, organization of activities).
   Regular attendance from CERN, DESY, DLS, INFN, KIT, KYMA, PSI, SOLEIL
- Organise general and topical workshops on the technology enabling the design and construction of future ultra-low emittance rings
- support exchange of staff for visits and common experiments and produce progress reports
- first workshop partially supported by I-FAST 99 delegates!





### Networking and knowledge sharing within Task 7.2:

Online presentations and discussions:

- Chris Burrows (Diamond), Introduction to the R&D Beamline and activities at Diamond (11.June 2021)
- Ian Martin (Diamond), Preparation for Diamond-II relevant to IFAST WP7.2 (11.June 2021)
- Laurant Nadolski (SOLEIL), About ongoing studies on the machine with a multipole injection kicker (15.July 2021)
- Giovanni Franzini (INFN), An overview of the bunch by bunch feedback at DAFNE (13.October 2021)

### Plan for experimental tests:

 Discussion about the possibility of experimental tests for the XBPM system at KARA – multibunch feedback system at DAFNE



### Workshop planning (working title):

- 1. Beam diagnostics and dynamics in ultra-low emittance rings
  - Expansion of our strong network dealing with ultra-low emittance rings, with a focus on beam diagnostics (e.g. on the hardware side) and beam dynamics (e.g. on the software side).
  - Planned venue and date: KIT (Karlsruhe, Germany), May 2022
- 2. Permanent magnet technologies and beam dynamics
  - exchanging and sharing knowledge for permanent magnet and related technologies (e. g., mechanical structures, girders etc.) and beam dynamics related to the ultra-low emittance rings. Link to Task 11.3. Potential cooperation with PERMALIC in LEAPS
  - Planned venue and date: CERN (Geneva, Switzerland), July 2022



### Workshop planning (continue):

- 3. NEG coating vacuum systems
  - Exchanging and sharing knowledge and information about NEG coating vacuum systems,
     which are now part of the mainstream of vacuum systems for the ultra-low emittance rings.
  - This topic is strongly related to beam dynamics because of the impedance problem. Therefore, we are considering a joint event with the workshop with beam dynamics (possible joint event of Task 7.2 and Task 10.5 is currently being discussed).
- 4. Beam dynamics for ultra-low emittance rings
  - Review of latest ultra-low emittance lattice design developments.
  - Optimisation tools, experimental tests of optimization. Model vs Machine studies.
  - Discussion at ALBA: G. Benedetti. (virtual / in person 2022)

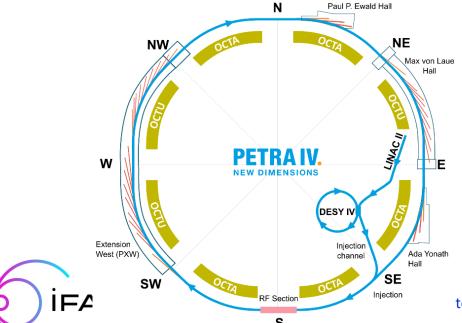


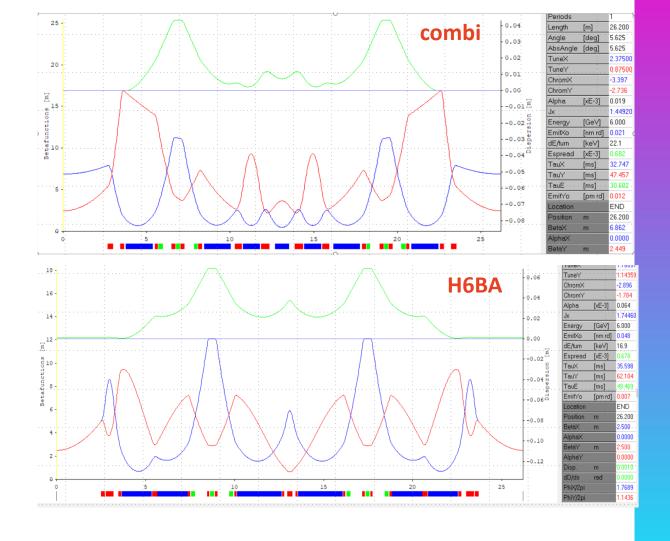
### Workshop planning (continue):

- 5. General workshop for the ultra-low emittance rings
  - Sharing a wide range of topics on ultra-low emittance rings, allowing us all to further strengthen our ULER network.
  - Planned venue: TBD, date: after October 2022.

Mainitaing the tradition of the General Workshop for Ultralow Emittance Rings started with the CLIC/ILC collaboration in 2010 and supported by EuCARD2, ARIES and now IFAST



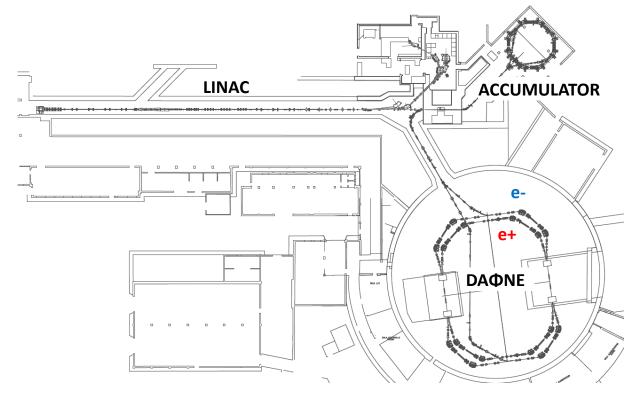

#### Task 7.2: new lattice at PETRA-IV


#### New H6BA cell:

- 4 DLs and 3 central DQs substituted with
- 2 DLQs and 4 PM DQs

Relaxed emittance in the arcs 43 pm and extensive use of damping wigglers in 5 octants (OCTA) for emittance damping to 20 pm and control. Undulator beamlines in 3 octants (OCTU)

DA and MA for bare lattice are remarkably larger.






### Task 7.2: diagnostics and feedback (INFN-LNF G. Franzini)

# Contribution to Task 7.2 at INFN-LNF is the sharing of measurement results and ideas for possible upgrades for the bunch by bunch feedback system of DADNE

- **DAONE** is an electron-positron collider in operation at INFN-LNF for physics experiments since 1999.
- It operates with (usually) 90 bunches at 510 MeV, with a time interval of 2.71 ns between each other.
   Typical stored currents are in the range of 1 A / 2 A
- Bunch-by-bunch longitudinal and transverse feedback systems were installed in each DAΦNE ring and became operational since 1999.
- An extensive review on the system is ongoing.
   Measurement campaign in order to evaluate and minimize any possible source of noise and interferences, and to find better solutions for the analog /digital treatments of the signals involved in the system. Extension to ultralow emittance rings





### Summary

- Activities in Task 7.2 have started: several workshops under planning
- No issues (...so far)
- Looking forward to progress with upcoming activities, milestone and deliverables

