

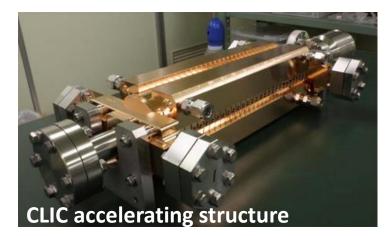
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

IFAST WP7_Task 7.5: CompactLight Prototype Accelerating Structure

I.FAST Steering Committee, 15-16 November, 2021

Gerardo D'Auria, Elettra - Sincrotrone Trieste

Task 7.5: CompactLight Prototype Accelerating Structures


Objective:

Build and test, at low and high RF power, two prototypes of the Xband (12 GHz) accelerating structure designed for the CompactLight (XLS) project, a new class of linac-driven FEL facilities, based on a Horizon 2020 Design Study.

The CompactLight (XLS) design study

- The CompactLight Project (XLS) is an EU funded design study aimed at promoting the construction of the next generation FEL based photon sources with innovative accelerator technologies.
- The objective is the design of a 5.5 GeV X-band linac, based on the CLIC technology, to drive a FEL facility with soft and hard X-ray options.

FAST

26 Partners:

- > 23 International Laboratories and Universities
- > 3 Private Industries.

Activities and Deliverables

The two prototypes will be used to get a full validation of the XLS accelerating structure at two RF operating regimes:

a) high gradient/low pulse repetition rate (60 MV/m @100Hz);b) low gradient/high pulse repetition rate (30 MV/m up to 1KHz).

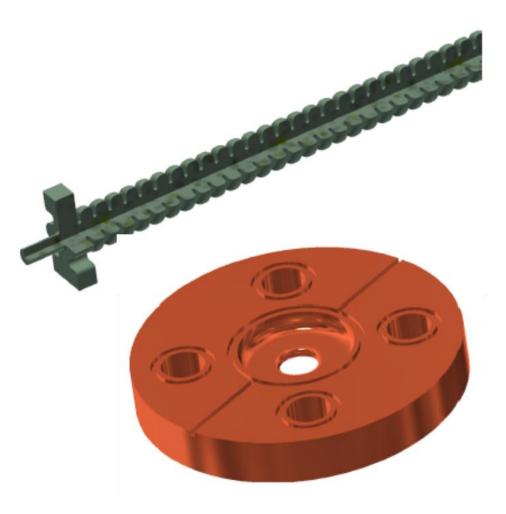
Two deliverables:

D7.5: Construction of the XLS accelerating structure pre-prototype.

Development of production process and RF tests of the pre-prototype (@TRL 6/7)_M24

D7.6: Construction of the XLS accelerating structure full prototype.

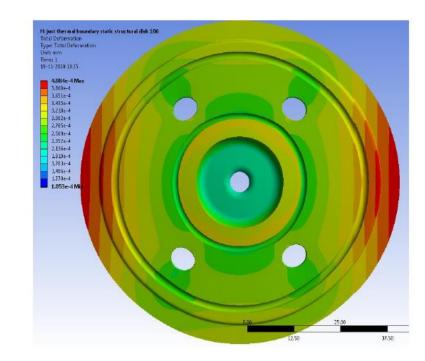
Production process analysis and validation, RF tests of the full prototype (@TRL 7/8)_M36


CompactLight Linac layout

					SXR SXR/ HXR HXR	
	Parameter	Unit	Dual	mode	Dual s	source
	Operating Mode		E	3	U1,	, U2
DOUBLE DOUBLE D.3 GeV X-band lin	Repetition rate	kHz	0.1	0.25	0.1	1
	Linac active length	m		g)4	
	Number of structures			1(04	
	Number of modules			2	26	
50 MW, 1.5 μs, @100 Hz	Number of klystrons		2	26	26 -	+ 26
	Peak acc. gradient	MV/m	65	32	65	30.4
	Energy gain per module	MeV	234	115	234	109
	Max. energy gain	MeV	6084	2990	6084	2834

Accelerating structure RF operating parameters

Parameter	Units		Value			
Frequency	GHz	(11.994	•		
Peak klystron power (100 - 250 Hz)	MW	MW				
Peak klystron power (1000 Hz)	MW		10			
RF pulse length (250 Hz)	μs	1.5 (0.15)				
Waveguide power attenuation	%		≈ 10			
Average iris radius a	mm		3.5			
Iris radius a	mm		4.3-2.7	7		
Iris thickness t	mm		4			
Structure length L _s	m					
Unloaded SLED Q-factor Q_0			18000	0		
External SLED Q-factor Q_E)			
Shunt impedance R	$M\Omega/m$		1			
Peak modified Poynting vector	$W/\mu m^2$					
Group velocity v_g/c	%		9			
Filling time t_f	ns		146			
Repetition rate	Hz	100	250	1000		
SLED		ON	OFF	ON		
Required klystron power	MW	44	44	9		
Average accelerating gradient	MV/m	65	30	30		


Courtesy M. Diomede

IFAST

Thermo-mechanical design

- Optimization of the cooling geometry
- > Iteration with RF on the deformation
- > Choice for 4 cooling channels with a diameter of 6 mm (similar to CLIC)
- > Cooling channels slightly asymmetrical to match the RF couplers

G. D'Auria_Open Steering Committee, 15-16 November, 2021

Courtesy M. van den Berg

Time plan

				202								022									2023						024
#	Activity	1 2 M J	2 3 J	4 A	5 6 S 0	7 N	8 D	9 1 J	0 11 F M	12 1 A N	.3 14 vi∶j	15 J	16 1 A	L7 18 S 0	19 N	20 2	21 22 J F	2 23	24 . A	25 M	26 2 J	7 28	29 3 S 0	80 31 D N	L 32	33 3 J F	4 35 3 M A
1	Technical drawings for prototype production						T					-									-		-				
2	Thermo-mechanical analysis and temperature stabilization at different operating regimes																										
3	Structure thermal simulations (INFN)																										
4	Brazing tests (three disks) at TMD																										
5	Brazing procedure																										
6	Production process analysis and optimization																										
7	First prototype fabrication						1																				
8	RF characterization																										
9	High power RF tests and validation															•••••											
1() Post-mortem characterization																		.i								
1	L Review of metrology data and test results																										
12	2 Second prototype fabrication															•••••											
13	3 RF characterization																										
14	1 High power RF tests and validation																										
15	5 Post-mortem characterization																										

Unexpected problems

Unfortunately, in mid-August, we were informed that our colleague, Mathieu Breukers, one of the founding fathers of the ultra precision machining activities at VDL-ETG, responsible for the XLS structure manufacturing, passed away.

For this reason, all the activities to prepare the disks manufacturing, the structure brazing, etc. have been stopped to allow VDL to review their work plans and to determine the way forward without the expertise and experience of Mathieu.

Modified schedule

				-)21)22)23						2024			
	#	Activity	123	4	56	78	9 10	11 12	13 14	15 1	6 17 1	8 19	20 21	22 2	3 24	25 26	27 28	3 29	30 31	32 3	3 34 3	5 36	37 38	39 40	41 42 43 S O N	44
		Technical drawings for prototype production	1 1	A	5 0	ND	JF	<u> M A</u>	MJ	111	4 5 0	<u> </u>		FN		MJ	JA	5	UN	D .		1 A	MG	JA	<u><u>S</u> O N</u>	<u> </u>
Activities started in May and carried out	2	Thermo-mechanical analysis and temperature stabilization at different operating regimes																								
up to mid of July	3	Structure thermal simulations (INFN)																								
Activities that need to be continued as soon as possible	4	Brazing tests (three disks) at TMD																								
	5	Brazing procedure																								
	6	Production process analysis and optimization																								
	7	First prototype fabrication																					Exte	ensi	ion	
	8	RF characterization																								
	9	High power RF tests and validation																								
	10	Post-mortem characterization																								
	11	Review of metrology data and test results																								
	12	Second prototype fabrication																								
	13	RF characterization																								
	14	High power RF tests and validation																								
	15	Post-mortem characterization																								

Thank you!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

rember 2221