N\

chun)) ATLAS

NS EXPERIMENT

algebra-plugins rewrite

Attila Krasznahorkay

Previously on algebra-plugins...

Repository Re-organisation, main branch (2021.10.1

3= Merged) niermannoo

@ Conversation (12

BB esma

e Some much-needed changes went

into algebra-plugins recently
o Inan effort to harmonise how each project
builds/finds its externals, | rewrote how
algebra-plugins would do this
o Beomki added explicit CUDA qualifiers on
the functions defined in the project, to

~ Add cuda qualifiers to algebras #

make them usable from device code —

Qc ion (14

q‘ beomki-yeo

https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/algebra-plugins/pull/28

Current Code Organisation

e The current code used in detray, which
still precedes algebra-plugins#27,

provides the following libraries:
P’ 8e093eadad - algebra-plugins / core /include / o algebra::array, algebra::eigen,
algebra::smatrix, algebra::vc: Providing std: :
or vecmem: : vector definitions, based on what

G asalzburger Merge pull request #15 from niermann999/ref-simd_warnings -

i ! was enabled
m eigen 1 o algebra::vecmem: Always providing vecmem: :
shatlx & vector definitions
T e It also shares a lot of headers between
D CMakeLisisax = these libraries, using different

preprocessor definitions to choose how

those headers should behave
o Making it impossible to use more than one of

those libraries/headers at the same time 3

https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/array/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/eigen/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/smatrix/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/vc/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/vecmem/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/tree/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include

Detray Code Reorganisation

e After the cleanup in

alqebra-pluqms#27, | wanted to do Project Externals Re- organlsatlon main branch (2021.10.18.)

something similar in Detray as well 130
o At first just making it build its externals in @ Comversaton i
the same way as | made algebra-plugins B cnsmnancommena 11 6o a0 o

do |t This is a half-sibling of a roje Igebra-plu #27. (Only "half*, as it doesn't do most of the cleanup that that one does.) It
updates the CMake wnﬂgulallon ofjus& how the "externals" are built, in the same way in which ct/algebr
7 does.

o Then, | would move on to cleaning up how

The main point of this update is to lay the groundwork of further CMake re-writes, which will allow us to "export" the Detray

the Detray I Ibra rleslexecuta blesltests targets such that they could be re-used using find_package. Which is very much not the case right now.

| guess the most controversial part of this update may be what | did with the dfelibs external. Since unfortunately the CMake
Wou Id be Set u p configuration of that code is much too simple. @ At least much too simple for using those headers publicly in the ‘detray: :io

headers. If we want to be able to "export” the Detray targets later on, we must be able to use a target for dfelibs that could be

valid for that exported ‘detray::io target. Long story short, | just wrote my own configuration for the 'dfelibs: :dfelibs

o H Oweve r I h a d to rea I I Se th at library, and the headers are being installed with the help of that code.

This is very much work in progress for now, as ideally acts-| t/algebra-plug 7 should be merged in, and a new release

| _I I 27 I | f algebra-plug hould & je before | Id finalise tt | Id also like t the effect of this PR 128.
algebra-plugins#27 was not compatible "wm.gamm&, Dl s e e
. plugins#27. But I'll make a proposal for that eventually as well... @®
with how the headers are currently
. .
being used in Detray

https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/detray/pull/129

algebra-plugins Rewrite

f'& Krasznaa

With a bit of a delay, this is the (actually!!) scary PR that | mentioned on Wednesday @niermann999.

s still a work in progress, and the commits wil probably need to be squ entually, but |

ook at how | would imagine ork in the future. Though | imagine that Il need to give a

The idea E E by the users, and how calculations on
that data wou 0 y all (#ifdef -s from the code. What I'm
setting up here is a code organisation in which the type of an "algebra class/function” would clearly state

« what type of objects it operates o
vhat type of code it use: 0 lculations
ructure of the code is the folloy

ommon) library, though by now only a single h gebra/scalar hpp) is used from it, with

r on | will want to get rid of this as well, but for now d to keep the compile-time decision

« lintroduced the (sEorage/. d
The current libraries are:

ry to the repository, which holds headt 2 jeclaring how data should be held in

algebra: :array_storage : Using (std:zarray, always enabled
algebra: :eigen_storage : Using Eigen: :Matrix , enabled by ALGEBRA_PLUGIN_ INCLUDE EIGEN .
storage : Using (ROOT: :Math enabled by |ALGEBRA_PLUGIN_INCLUDE .
algebra age : Using ndArray , enabled by AL PLUGIN_INCLUDE .
algebra: :vecmen_sorage : Using ‘vecmen: :static_array , enabled by ALGEBRA_PLUGIN_INCLUDE_VECH:
« lintroduced the (i, directory, v iid hold all the “mathemati hd b ed. Tr
libraries are:
algebra: :cmath_math ing "basic C++
algebra: :eigen_math : Using Eig 5
algebra: :smatrix_math : Using ROOT: :Math d by (ALGES
algebra: :ve_math : Usi operations, enabled by (ALGEBRA.PLUGTN.TNCLUDE
. Onto components | introduced the (frontend/! directory, which would hold libraries crez model -
mathema mbinations. | will not list all of them here, have a look yourself. @
s | still kept (€ese_pluginsanl with minimal modifications, even though | have ideas for making that a whole
The chan s the "matri d by the transformations internally, for every "mathemati
Not just the ones for which (- plugin Without matrix_ elenent would not be declared

nerali heck out of ‘algebra ath, to make it work f eve ag
taught (algebra: :ve_math to work with all of ‘algebra: :array_storage , (algebra: :vecmen_storage , and of course

storage . 'm stil pondering aking (algebras ;eigen math and ‘algebra::smatrix_math capable of

working with something other than their "own storage type", but that may not be super useful in the end.

Have a look, and let me know what you think. @

Pinging @beomki-yeo, @stephenswat, @paulgessinger, @asalzburger.

At that point | decided to rewrite
algebra-plugins in a quite fundamental
way, so that it would not have to use
preprocessor definitions to function
That became algebra_plugins#31,
which this talk is about...

https://github.com/acts-project/algebra-plugins/pull/31
https://github.com/acts-project/algebra-plugins/pull/31

Storage / Math Separation

| wanted to make the “data storage”

and “math implementation” separated
o To allow us to mix-and-match these as
we’d like
o Since the “math implementation” between
the current libraries has a lot of copy-paste,
this also allows us to have every
function/class only defined once

For now only the “cmath math
implementation” can use vectors from

all data storage implementations
o But this could very well be extended later
on

cmath::operator*;

operator-;

) cmath::operator+;

“Frontend” Libraries

Storage types would be combined
with math implementations in
“frontend libraries”

These would define “the correct” math
types/functions in the “global

namespaces”

o Client code currently assumes that
separate namespaces are used for the
vector type and transform declarations, but
that “helper functions” would always be in
algebra::getter and
algebra::vector

Library Re-Organisation

[algebra::common]

/AN N _

[algebra::array_storage J [algebra::eigen_storage]/[algebra::smatrix_storage algebra::vc_storage] [algebra::vecmem_storage]

= /T N |

[) []l \ \ N\
[|)\

[algebra::cmath_math] algebra::smatrix_math algebra::vc_math]

) \
A -

[algebra::vecmem_cmath]

[algebra::vc_vc]

algebra::eigen_cmath] [algebra::smatrix_cmath] [algebra::vc_cmath]

math

| <7 — [/

[algebra::array_cmath]

[algebra::eigen_eigen] [algebra::smatrix_smatrix]

frontend [

Testing The Changes

e Since the algebra-plugins unit tests <foo> intersect all times in milliseconds, on an
AMD Threadripper 3970X
do not test every aspect of the code
(something to improve upon later on),

double precision

New algebra-plugins with

I WaS teStl ng my Changes |n Plugin Type Current algebra-plugins New algebra-plugins aggressive V¢ optimisation
array 1169 + 2 1200 + 10 114112
detrav#1 29 eigen 1373 +8 1229+ 2 1183+ 1
o The biggest question lately was not smatrix 2645+ 14 2625+6 2658+ 3
ve 36915 2678 +2 1355+ 4

whether the re-written code would work,
but how it would affect the performance of

float precision

New algebra-plugins with

eve I'yth | ng) Plugin Type Current algebra-plugins New algebra-plugins aggressive V¢ optimisation
o This is a bit hard to answer... &2 | would amay 104224 106715 980+ 1
. . eigen 1270 £ 5 1307 + 3 1192+ 2
argue that it does not affect performance in —_ 240322 156812 152952
any significant way ve 1040 + 1 1148 1 1067 £5

o Some more details can be found here

https://github.com/acts-project/detray/pull/129
https://docs.google.com/spreadsheets/d/1huKVOZ6g72T2k2RIjvbx73tEFrWJJlnNK5sqeXFn9B4/edit?usp=sharing

Backup

Dot Graph

aigebra
(algobra

math
y_corath)

™ aigebra eigen cmath
(algobra-vigon_cmalh)

algeora veve T algebra vecmem cmath < algepra smatrix cmath < algebra smamxsmamix >
(algobrave_ve) 4 \ (algebra::vecmen,_cmath) 1 . (algobrazsmal w7 . (algebrazsmalrx_smalrix) -

bra_vecnom algobra_smalix_storag
gebrazsmale slarage)

algeb
(algebrazvecine

e ¥
(algebrassmatrix_math)

algobra_v
(algebrasv

(algebrazeie

aman
(algebrascamman)

1

Cﬁw
\
N/ A

http://home.cern

http://home.cern

