
algebra-plugins rewrite
Attila Krasznahorkay

Previously on algebra-plugins…

2

● Some much-needed changes went
into algebra-plugins recently

○ In an effort to harmonise how each project
builds/finds its externals, I rewrote how
algebra-plugins would do this

○ Beomki added explicit CUDA qualifiers on
the functions defined in the project, to
make them usable from device code

https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/algebra-plugins/pull/28

Current Code Organisation

● The current code used in detray, which
still precedes algebra-plugins#27,
provides the following libraries:

○ algebra::array, algebra::eigen,
algebra::smatrix, algebra::vc: Providing std::
or vecmem:: vector definitions, based on what
was enabled

○ algebra::vecmem: Always providing vecmem::
vector definitions

● It also shares a lot of headers between
these libraries, using different
preprocessor definitions to choose how
those headers should behave

○ Making it impossible to use more than one of
those libraries/headers at the same time 3

https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/array/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/eigen/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/smatrix/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/vc/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/blob/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include/vecmem/CMakeLists.txt
https://github.com/acts-project/algebra-plugins/tree/8e093eada4326d50e16d14dc6a5610ee7945e991/core/include

Detray Code Reorganisation

● After the cleanup in
algebra-plugins#27, I wanted to do
something similar in Detray as well

○ At first just making it build its externals in
the same way as I made algebra-plugins
do it

○ Then, I would move on to cleaning up how
the Detray libraries/executables/tests
would be set up

● However I had to realise that
algebra-plugins#27 was not compatible
with how the headers are currently
being used in Detray ☹

4

https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins/pull/27
https://github.com/acts-project/detray/pull/129

algebra-plugins Rewrite

● At that point I decided to rewrite
algebra-plugins in a quite fundamental
way, so that it would not have to use
preprocessor definitions to function

● That became algebra_plugins#31,
which this talk is about…

5

https://github.com/acts-project/algebra-plugins/pull/31
https://github.com/acts-project/algebra-plugins/pull/31

Storage / Math Separation

● I wanted to make the “data storage”
and “math implementation” separated

○ To allow us to mix-and-match these as
we’d like

○ Since the “math implementation” between
the current libraries has a lot of copy-paste,
this also allows us to have every
function/class only defined once

● For now only the “cmath math
implementation” can use vectors from
all data storage implementations

○ But this could very well be extended later
on

6

“Frontend” Libraries

● Storage types would be combined
with math implementations in
“frontend libraries”

● These would define “the correct” math
types/functions in the “global
namespaces”

○ Client code currently assumes that
separate namespaces are used for the
vector type and transform declarations, but
that “helper functions” would always be in
algebra::getter and
algebra::vector

7

frontend

math

storage

Library Re-Organisation

8

algebra::common

algebra::array_storage algebra::eigen_storage algebra::vc_storage algebra::vecmem_storagealgebra::smatrix_storage

algebra::cmath_math algebra::eigen_math algebra::smatrix_math algebra::vc_math

algebra::array_cmath

algebra::eigen_cmath

algebra::eigen_eigen

algebra::smatrix_cmath

algebra::smatrix_smatrix

algebra::vc_cmath

algebra::vc_vc

algebra::vecmem_cmath

Testing The Changes

● Since the algebra-plugins unit tests
do not test every aspect of the code
(something to improve upon later on),
I was testing my changes in
detray#129.

○ The biggest question lately was not
whether the re-written code would work,
but how it would affect the performance of
everything.

○ This is a bit hard to answer… ☹ I would
argue that it does not affect performance in
any significant way

○ Some more details can be found here

9

double precision

Plugin Type Current algebra-plugins New algebra-plugins
New algebra-plugins with

aggressive Vc optimisation

array 1169 ± 2 1200 ± 10 1141 ± 2

eigen 1373 ± 8 1229 ± 2 1183 ± 1

smatrix 2645 ± 14 2625 ± 6 2658 ± 3

vc 3691 ± 5 2678 ± 2 1355 ± 4

float precision

Plugin Type Current algebra-plugins New algebra-plugins
New algebra-plugins with

aggressive Vc optimisation

array 1042 ± 4 1061 ± 15 980 ± 1

eigen 1270 ± 5 1307 ± 3 1192 ± 2

smatrix 2493 ± 2 1568 ± 2 1529 ± 2

vc 1040 ± 1 1148 ± 1 1067 ± 5

<foo>_intersect_all times in milliseconds, on an
AMD Threadripper 3970X

https://github.com/acts-project/detray/pull/129
https://docs.google.com/spreadsheets/d/1huKVOZ6g72T2k2RIjvbx73tEFrWJJlnNK5sqeXFn9B4/edit?usp=sharing

Backup

10

11

Dot Graph

http://home.cern

12

http://home.cern

