Southampton

CP-violation in the three Higgs doublet model and charged Higgs phenomenology [JHEP 07 (2021) 158]

Muyuan Song

LHC Higgs working group WG3 (BSM)

5 November, 2021

with Heather E. Logan, Stefano Moretti, Diana Rojas-Ciofalo.

Motivation

- 2 Higgs fields in 3HDM (Three-Higgs-Doublet-Model)
- 3 Mixing matrix and Yukawa couplings for charged Higgs
- 4 Electric-dipole moment (EDM) constraint for charged Higgs
- 5 Perturbativity, top width, and other constraints

6 BP results

Motivation of charged Higgs and 3HDM (3-Higgs-Doublets-Model)

• Existence of charged Higgs boson?

	SPIN 0	SPIN 1/2	SPIN 1
Charge 0	Н	$ u_e, u_\mu, u_ au$	γ, Z, g
Charge ± 1	H^{\pm} ?	$e^{\pm}, \mu^{\pm}, au^{\pm}, u, d, c, s, t, b$	W^{\pm}

Reason for 3HDM:

- Not much literature attention as 2HDM.
- Rich scalar structure.
- Extra sources of CP-violation in charged scalar sector (vs. generic 2HDM).

Charged Higgs in 3HDM (Weinberg)

Three active isospin fields Φ_i(i = 1, 2, 3) are introduced, and each contain a vacuum expectation value with sum rule :

$$\Phi_{i} = \left(\begin{array}{c} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0,real} + i\phi_{i}^{0,imag})/\sqrt{2} \end{array}\right), \sum_{i} v_{i}^{2} = v_{sm}^{2} = (246 \, GeV)^{2}$$

 A unitary 3 × 3 matrix U is introduced in order to specify charged Higgs mass eigenstates (Left) from charged fields (Right) rotation: [Y. Grossman, 1994]

$$\left(\begin{array}{c}G_1^+\\H_2^+\\H_3^+\end{array}\right) = U\left(\begin{array}{c}\phi_1^+\\\phi_2^+\\\phi_3^+\end{array}\right)$$

3HDM Scalar potential under $Z_2 \times Z_2$ symmetry

$$\begin{split} V &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + m_{33}^2 \Phi_3^{\dagger} \Phi_3 \\ &- [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + m_{13}^2 \Phi_1^{\dagger} \Phi_3 + m_{23}^2 \Phi_2^{\dagger} \Phi_3 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \frac{1}{2} \lambda_3 (\Phi_3^{\dagger} \Phi_3)^2 \\ &+ \lambda_{12} (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_{13} (\Phi_1^{\dagger} \Phi_1) (\Phi_3^{\dagger} \Phi_3) + \lambda_{23} (\Phi_2^{\dagger} \Phi_2) (\Phi_3^{\dagger} \Phi_3) \\ &+ \lambda_{12}' (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \lambda_{13}' (\Phi_1^{\dagger} \Phi_3) (\Phi_3^{\dagger} \Phi_1) + \lambda_{23}' (\Phi_2^{\dagger} \Phi_3) (\Phi_3^{\dagger} \Phi_2) \\ &+ \frac{1}{2} [\lambda_{12}' (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_{13}'' (\Phi_1^{\dagger} \Phi_3)^2 + \lambda_{23}'' (\Phi_2^{\dagger} \Phi_3)^2 + \text{h.c.}], \end{split}$$

[G. Cree and H.E. Logan, 2011]

- 6 complex parameters: 3 soft-breaking masses $m_{12}^2, m_{13}^2, m_{23}^2$, 3 quartic couplings $\lambda_{12}'', \lambda_{13}'', \lambda_{23}''$.
- Five parameters could be eliminated and leaves only one left for charged scalar CP-violation resource (Im(λ^{''}₁₂)).

Charged Higgs mixing matrix U in 3HDM

• The matrix U can be written explicitly as a function of four parameters $\tan \beta$, $\tan \gamma$, θ , and δ , where :

$$aneta = v_2/v_1, \qquad an\gamma = \sqrt{v_1^2 + v_2^2}/v_3.$$

- v₁, v₂, and v₃ are the vacuum expectation values of the three Higgs doublets.
- θ is the mixing angle between H_2^+ and H_3^+ .
- δ is the CP-violating phase source. $(Im(\lambda_{12}''))$
- The explicit form of U given as :

$$=\left(egin{array}{ccc} s_\gamma c_eta & s_\gamma s_eta & c_\gamma\ -c_ heta s_eta e^{-i\delta} - s_ heta c_\gamma c_eta & c_ heta c_eta e^{-i\delta} - s_ heta c_\gamma s_eta & s_ heta s_\gamma\ s_ heta s_eta e^{-i\delta} - c_ heta c_\gamma c_eta & -s_ heta c_eta e^{-i\delta} - c_ heta c_\gamma s_eta & c_ heta s_\gamma\end{array}
ight)$$

Here s, c denote the sine or cosine of the respective parameter.

Yukawa Couplings of charged Higgs in 3HDM

• Charged Higgs Yukawa interactions are written by :

$$\mathcal{L}_{H_i^{\pm}} = -\sum_{i=2}^3 H_i^{\pm} \{ \frac{\sqrt{2} V_{ud}}{v_{sm}} \bar{u} (m_d \mathbf{X}_i P_R + m_u \mathbf{Y}_i P_L) d + \frac{\sqrt{2} m_l}{v_{sm}} \mathbf{Z}_i \bar{\nu}_L I_R \} + H.c.$$

• Yukawa couplings for H_i^+ (with i = 2, 3) can be written as :

$$X_i = \frac{U_{di}^{\dagger}}{U_{d1}^{\dagger}}, \qquad Y_i = -\frac{U_{ui}^{\dagger}}{U_{u1}^{\dagger}}, \qquad Z_i = \frac{U_{\ell i}^{\dagger}}{U_{\ell 1}^{\dagger}}$$

• Five independent versions of Yukawa interactions of 3HDM with NFC based on charged assignment of two softly-broken discrete Z₂ symmetries.

	u	d	ℓ
3HDM(Type I)		2	2
3HDM(Type II)		1	1
3HDM(Lepton-specific)		2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3

Electric-diopole moment(EDM) constraints for CP-violation

	SM Prediction	Experimental bound		
Neutron-EDM(nEDM)	$\sim 10^{-31} - 10^{-32}$ e cm.	$ d_n < 1.8 imes 10^{-26}$ e cm. [Phys.Rev.Lett. 124 (2020) 8, 081803]		
Electron-EDM(eEDM)	$\sim 10^{-38}$ e cm.	$ d_e < 1.1 imes 10^{-29}$ e cm. [Nature. 562 (2018) 7727, 355–360]		

 nEDM and eEDM in SM with CKM phases [Maxim and Adam 2005, hep-ph/0504231].

$$\mathcal{L}_{H_i^{\pm}} = -\sum_{i=2}^{3} H_i^{+} \{ \frac{\sqrt{2} V_{ud}}{v_{sm}} \bar{u} (m_d X_i P_R + m_u Y_i P_L) d + \frac{\sqrt{2} m_l}{v_{sm}} Z_i \bar{\nu}_L I_R \} + H.c.$$

3-gluon contribution and Chromo-EDM for nEDM

[Jung and Pich, 2014]

- Light quark masses suppress four quark fermion operators and upand down-type quark Chromo-EDMs.
- Left. Weinberg operator (3-gluon).
- Right. b-quark Chromo-EDM $(d_b^C(\mu_{tH}))$.

Barr-Zee diagram for eEDM

- Left. $H_i^+ f_u \bar{f}_d$ is the dominant contribution.
- Middle and Right. No $\Phi^0 e^+ e^-$ and $\Phi^0 H_i^+ H_i^-$ (no CP-violation phase in neutral sector).
- $\Phi^0 H_i^+ H_j^-$ may have CP-violation however the coupling does not appear in such diagram as photon couples to charged Higgs is diagonal.

Perturbativity, top width and other constraints

- Perturbativity: $\Gamma_{H^{\pm}}$ into $tb < \frac{M_{H^{\pm}}}{2}$. [V.D. Barger, J. Hewett and R. Phillips, 1990]
- Top decay width: $M_{H_i^{\pm}} < m_t$. $\Gamma(t \rightarrow H_i^{\pm}b)$ into SM top decay width. $\Gamma_t = 1.9 \pm 0.5$ GeV. [PDG,2020]

$$M_{H^{\pm}_{2,3}}=85,500$$
 GeV, $heta=-\pi/4,\delta=0.85\pi.$

EDMs, $\bar{B} ightarrow X_s \gamma$ and other constraints

$$\mathcal{L}_{H_i^{\pm}} = -\sum_{i=2}^{3} H_i^{+} \{ \frac{\sqrt{2} V_{ud}}{v_{sm}} \bar{u} (m_d X_i P_R + m_u Y_i P_L) d + \frac{\sqrt{2} m_l}{v_{sm}} Z_i \bar{\nu}_L I_R \} + H.c.$$

- After the effective field framework and dimensional analysis work as A2HDM[Jung and Pich, 2014], results are extrapolated and calculated to constrain the Im(X_iY_i^{*}) (nEDM) and Im(Y_i^{*}Z_i) (eEDM).
- Perturbativity,top width and collider constraints included.

CMS, JHEP11(2018)115. 8TeV

ATLAS, Eur.Phys.J.C73(2013)2465. 7TeV

CMS, JHEP07(2019)142. 13 TeV

• BR $(\bar{B} \to X_s \gamma)$. [A. Akeroyd, S. Moretti, T. Shindou and M. Song, 2021]

$$M_{H_2^{\pm}}, M_{H_3^{\pm}}, \tan \beta, \tan \gamma, \theta, \delta.$$

EDMs, $\bar{B} \rightarrow X_s \gamma$ and other constraints (Lower masses)

 $2 \sigma \text{ BR}(\bar{B} \to X_s \gamma)$ (Grey (higher) and Green (lower) area), eEDM(above blue curve), nEDM(right part of red curve) with $M_{H_{2,3}^{\pm}} = 80,170 \text{ GeV}, \theta = -0.3$. Left. $\delta = 0.96\pi$. Right. $\delta = 0.985\pi$.

BR($\bar{B} \to X_s \gamma$) and two EDMs(nEDM and eEDM) under $[M_{H_2^{\pm}}, M_{H_3^{\pm}}]$ (Heavy masses)

 $2 \sigma BR(\bar{B} \to X_s \gamma)$ (Grey (higher) and Green (lower) area), eEDM(between blue lines), nEDM(between red lines) with $\theta = -\pi/2.1$, tan $\beta = 20$, $\delta = \pi/2$. Left Panel: tan $\gamma = 1$. Right Panel: tan $\gamma = 2$.

14 / 26

- We studied charged Higgs sector in 3HDM (contains 3 active doublets).
- In the case of isolation of neutral sector, the contribution of EDMs (nEDM and eEDM) for charged scalar sector are calculated based on the mixing parameters $(tan\beta, tan \gamma, \theta, \delta)$ and masses of charged Higgs states.
- Together with perturbativity, top width, collider and $\bar{B} \rightarrow X_s \gamma$ constraints, we study the surviving parameter space of charged Higgs states in 3HDM.
- In particular, the suppression of EDM constraint from degeneracy of two charged Higgs masses $(M_{H_2^{\pm}}, M_{H_3^{\pm}})$ are realised. (GIM-like mechanism)
- Tunnel effect generated from charged Higgs mass degeneracy due to unitarity of charged Higgs mixing matrix *U*.

Southampton

Thanks for Listening

Southampton

Backup slides

Branching ratio of $\bar{B} ightarrow X_s \gamma$

- short distance pertubative $b
 ightarrow s\gamma \; (|ar{D}|)$
- short distance perturbative $b \rightarrow s \gamma g$ (A) (gluon Bremsstrahlung process)
- Long distance non perturbative corrections to scale $\frac{1}{m_{e}^{2}}$ and $\frac{1}{m_{e}^{2}}$.

$$\begin{split} \Gamma(\bar{B} \to X_s \gamma) &= & \frac{G_F^2}{32\pi^4} |V_{ts}^* V_{tb}|^2 \alpha_{em} m_b^5 \\ &\times & \left\{ |\bar{D}|^2 + A + \frac{\delta_\gamma^{NP}}{m_b^2} |C_\gamma^{0,\text{eff}}(\mu_b)|^2 \\ &+ & \frac{\delta_c^{NP}}{m_c^2} \operatorname{Re} \left[[C_\gamma^{0,\text{eff}}(\mu_b)]^* \times \left(C_2^{0,\text{eff}}(\mu_b) - \frac{1}{6} C_1^{0,\text{eff}}(\mu_b) \right) \right] \right\} \\ \mathrm{BR}(\bar{B} \to X_s \gamma) &= & \frac{\Gamma(\bar{B} \to X_s \gamma)}{\Gamma_{SL}} \operatorname{BR}_{SL} \end{split}$$

• Γ_{SL} is the semileptonic decay width and BR_{SL} is the measured semileptonic decay branching ratio.

$\mathsf{BR}(ar{B} o X_{\!s} \gamma)$ under $[M_{H_2^\pm}, M_{H_3^\pm}]$

3 σ BR($\bar{B} \to X_s \gamma$) in the plane $[m_{H_2^{\pm}}, m_{H_3^{\pm}}]$, with $\theta = -\pi/2.1$, tan $\beta = 10$, tan $\gamma = 1$. Left Panel: $\delta = 0$. Right Panel: $\delta = \pi/2$. δ has large effect on BR

Cancellation in charged Higgs contribute to EDMs continued

- Such sort of GIM-like mechanism is due to the unitarity of the charged Higgs mixing matrix *U*.
- nEDM constrains $Im(X_iY_i^*)$ and eEDM constrains $Im(Y_i^*Z_i)$.
- eEDM contribution is zero for Type I and Flipped 3HDM as $Y_i = Z_i$.
- nEDM contribution is zero for Type I and Lepton-specific 3HDM as $X_i = Y_i$.

$$X_i = \frac{U_{di}^{\dagger}}{U_{d1}^{\dagger}}, \qquad Y_i = -\frac{U_{ui}^{\dagger}}{U_{u1}^{\dagger}}, \qquad Z_i = \frac{U_{\ell i}^{\dagger}}{U_{\ell 1}^{\dagger}}$$

	u	d	l
3HDM(Type I)	2	2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)	2	2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3

Cancellation in charged Higgs contribute to EDMs continued

By taking the Democratic-type model for nEDM as an example,

$$\begin{split} X_i Y_i^* &= -\frac{U_{1i}^{\dagger} U_{i2}}{U_{11}^{\dagger} U_{12}}, \\ \sum_{i=2}^3 \operatorname{Im}(X_i Y_i^*) f(M_{H_i^+}) &= -\frac{1}{U_{11}^{\dagger} U_{12}} [\operatorname{Im}(U_{12}^{\dagger} U_{22}) f(M_{H_2^+}) \\ &+ \operatorname{Im}(U_{13}^{\dagger} U_{32}) f(M_{H_3^+})]. \end{split}$$

• where $f(M_{H_i^+})$ represents the dependence of the diagram on the charged Higgs boson mass.

• In the case of $M_{H_2^{\pm}} = M_{H_3^{\pm}} \equiv m$, such result will be = $-\frac{1}{U_{11}^{\dagger}U_{12}} \operatorname{Im}(\delta_{12})f(m) = 0$ as $\operatorname{Im}(X_2Y_2^*) = -\operatorname{Im}(X_3Y_3^*)$ [Jung and Pich, 2014]

$$\begin{aligned} |d_{n}(C_{W})/e| &= \left[1.0^{+1.0}_{-0.5}\right] \times 20 \text{ MeV } C_{W}(\mu_{h}), \mu_{h} \approx 1 \text{GeV} \\ C_{W}(\mu_{h}) &= \eta_{c-h}^{\kappa_{W}} \eta_{b-c}^{\kappa_{W}} \left(\eta_{t-b}^{\kappa_{W}} C_{W}(\mu_{tH}) + \eta_{t-b}^{\kappa_{C}} \frac{g_{s}^{3}(\mu_{b})}{8\pi^{2}m_{b}} \frac{d_{b}^{C}(\mu_{tH})}{2}\right) \\ \frac{d_{b}^{C}(\mu_{tH})}{2} &= -\frac{G_{F}}{\sqrt{2}} \frac{1}{16\pi^{2}} |V_{tb}|^{2} m_{b}(\mu_{tH}) [\text{Im}(-X_{2}Y_{2}^{*})x_{tH_{2}} \left(\frac{\log(x_{tH_{2}})}{(x_{tH_{2}}-1)^{3}}\right) \\ &+ \frac{(x_{tH_{2}}-3)}{2(x_{tH_{2}}-1)^{2}}\right) + \text{Im}(-X_{3}Y_{3}^{*}) x_{tH_{3}} \left(\frac{\log(x_{tH_{3}})}{(x_{tH_{3}}-1)^{3}} + \frac{(x_{tH_{3}}-3)}{2(x_{tH_{3}}-1)^{2}}\right)] \end{aligned}$$

• where
$$x_{tH_i} = m_t^2 / M_{H_i^{\pm}}^2$$
, $\eta_{a-b} = \frac{\alpha_s(a)}{\alpha_s(b)}$ and $C_W(\mu_{tH}) = 0$.
• $\kappa_i = \gamma_i / (2\beta_0)$, where $\gamma_W = N_C + 2n_f$ and $\gamma_C = 10C_F - 4N_C$.

Formulas for charged Higgs in eEDM

$$d_{e}(M_{H_{2}^{\pm}}, M_{H_{3}^{\pm}})_{BZ} = -m_{e} \frac{24G_{F}^{2}M_{W}^{2}}{(4\pi)^{4}}|V_{tb}|^{2}$$

$$\times \left[Im(-Y_{2}^{*}Z_{2})\left(q_{t}F_{t}(z_{H_{2}^{\pm}}, z_{W}) + q_{b}F_{b}(z_{H_{2}^{\pm}}, z_{W})\right) + Im(-Y_{3}^{*}Z_{3})\left(q_{t}F_{t}(z_{H_{3}^{\pm}}, z_{W}) + q_{b}F_{b}(z_{H_{3}^{\pm}}, z_{W})\right) \right]$$

where $q_t = 2/3$ and $q_b = -1/3$ are quark electric charges, $z_a = M_a^2/m_t^2$.

$$\begin{aligned} F_q(z_{H_i^{\pm}}, z_W) &= \frac{T_q(z_{H_i^{\pm}}) - T_q(z_W)}{z_{H_i^{\pm}} - z_W}, \\ T_t(x) &= \frac{1 - 3x}{x^2} \frac{\pi^2}{6} + \left(\frac{1}{x} - \frac{5}{2}\right) \log x - \frac{1}{x} - \left(2 - \frac{1}{x}\right) \left(1 - \frac{1}{x}\right) \text{Li}_2(1 - x), \\ T_b(x) &= \frac{2x - 1}{x^2} \frac{\pi^2}{6} + \left(\frac{3}{2} - \frac{1}{x}\right) \log x + \frac{1}{x} - \frac{1}{x} \left(2 - \frac{1}{x}\right) \text{Li}_2(1 - x). \end{aligned}$$

Muyuan Song (Southampton)

Perturbativity, top width and collider constraints continued

• Perturbativity: $\Gamma_{H^{\pm}}$ into $tb < \frac{M_{H^{\pm}}}{2}$. [V.D. Barger, J. Hewett and R. Phillips, 1990]

$$\begin{split} \Gamma(H^+ \to t\bar{b}) &\simeq \frac{3G_F m_t^2}{4\sqrt{2}\pi \tan^2\beta} M_{H^+} < \frac{1}{2} M_{H^+}, \mathrm{or} \ \tan\beta \gtrsim 0.34.(\mathrm{Type-I}) \\ \Gamma(H^+ \to t\bar{b}) &\simeq \frac{3G_F m_b^2 \tan^2\beta}{4\sqrt{2}\pi} M_{H^+} < \frac{1}{2} M_{H^+}, \mathrm{or} \ \tan\beta \lesssim 125, (\mathrm{Type-II}) \end{split}$$

• Top decay width: $M_{H_i^\pm} < m_t$.

$$\Gamma(t \to H_i^{\pm} b) = \frac{G_f m_t}{8\sqrt{2}\pi} [m_t^2 |Y_i|^2 + m_b^2 |X_i|^2] (1 - M_{H_i^{\pm}}^2 / m_t^2)^2$$

Perturbativity, top width and collider constraints continued

 $\sigma(pp \to H_i^{\pm}tb) \times BR(H_i^{\pm} \to \tau \nu_{\tau}). \tan \beta = 20, \delta = 0.9\pi. \ [\theta, \tan \gamma].$ Left. $H_2^{\pm} = 80$ GeV. Center. $H_3^{\pm} = 170$ GeV. Right. $H_3^{\pm} = 200$ GeV.

CMS, JHEP07(2019)142. 13 TeV

Perturbativity, top width and collider constraints continued

CMS, JHEP11(2018)115. 8 TeV ATLAS, Eur.Phys.J.C73(2013)2465. 7 TeV CMS, JHEP07(2019)142. 13 TeV

26 / 26