Prospects of same sign trilepton search in the Type I two Higgs doublet model at the LHC

Prasenjit Sanyal

Asia Pacific Center for Theoretical Physics, Korea

1

Outline

- Overview of Type I two Higgs doublet model (2HDM).
- Limits on the charged Higgs parameters $(m_{H^{\pm}} \tan \beta)$.
- Electro Weak production of charged Higgs.
- Fermiophobic nature of charged Higgs and heavy Higgs in Type I 2HDM.
- Signatures of same sign trilepton in Type I 2HDM.

- 2HDM is the minimal but phenomenologically rich extension of SM under the same gauge symmetry.
- The scalar sector of the 2HDM consists of two SU(2) Higgs doublets Φ_i , i = 1, 2.

$$\begin{array}{rcl} \Phi_i & = & \left(\begin{array}{c} \phi_i^+ \\ \frac{\nu_i + \rho_i + i \eta_i}{\sqrt{2}} \end{array}\right) \\ v_i = \langle \rho_i \rangle & v & = & \sqrt{\nu_1^2 + \nu_2^2} = 246 \ \text{GeV} \end{array}$$

 Mostly studied: CP conserving 2HDM with softly broken Z₂ (to avoid Higgs mediated FCNC) symmetry.

$$V_{\text{2HDM}} \supset m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.$$

- After EWSB, the scalar sector consists of two CP even Higgses (h and H), one CP odd scalar A and a pair of charged Higgs H[±].
- Parameters: m_h^2 , m_H^2 , m_H^2 , $m_{H^\pm}^2$, m_{12}^2 , v, $\tan \beta (= v_2/v_1)$, $\sin(\beta \alpha)$
- In 2HDM, h is identified as the observed 125 GeV Higgs boson.

- Based on the Z₂ charge assignments for the fermions, there are four possible Yukawa structures – Type I, II, X and Y.
- After EW symmetry breaking the Yukawa Lagrangian in terms of the mass eigenstates is:

$$\begin{split} \mathcal{L}_{\text{Yuk, I}}^{\text{2HDM}} & = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_h^f \overline{f} h f + \xi_H^f \overline{f} H f - i \xi_A^f \overline{f} \gamma_5 A f \right) \\ & - \left\{ \frac{\sqrt{2} V_{ud}}{v} \overline{u} \left(\xi_A^u m_u P_L + \xi_A^d m_d P_R \right) H^+ d + \frac{\sqrt{2} m_l}{v} \xi_A^I \overline{v}_L H^+ I_R + \text{h.c.} \right\} \end{split}$$

ξ_h^u	ξ_h^d	ξ_h^ℓ	ξ_H^u	ξ_H^d	ξ_H^ℓ	ξ_A^U	ξ^d_A	ξ_{A}^{ℓ}
c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	s_lpha/s_eta	s_lpha/s_eta	s_lpha/s_eta	$\cot \beta$	$-\cot \beta$	$-\cot \beta$

Other couplings:

(A) $hVV : \sin(\beta - \alpha)g_{hVV}^{SM}$, $HVV : \cos(\beta - \alpha)g_{hVV}^{SM}$, AVV : 0 where V = Z, W^{\pm} .

$$(\mathsf{B}) \ \ \mathit{hAZ}_{\mu} : \ \tfrac{g}{2C_W} \cos(\beta - \alpha)(\mathit{p} + \mathit{p}')_{\mu}, \quad \mathit{HAZ}_{\mu} : \ -\tfrac{g}{2C_W} \sin(\beta - \alpha)(\mathit{p} + \mathit{p}')_{\mu}$$

(C) $H^{\pm}hW_{\mu}^{\mp}: \mp i\frac{g}{2}\cos(\beta-\alpha)(p+p')_{\mu}, \quad H^{\pm}HW_{\mu}^{\mp}: \pm i\frac{g}{2}\sin(\beta-\alpha)(p+p')_{\mu}, \quad H^{\pm}AW_{\mu}^{\mp}: \frac{g}{2}(p+p')_{\mu}$

4

- Unitarity and vacuum stability bounds can be satisfied by proper choice of $m_{12}^2 \in [0, m_H^2 \sin \beta \cos \beta]$.
- The EWPO, T parameter depends strongly on the mass spliting of the charged Higgs and the neutral scalars.

Henning Bahl, Tim Stefaniak, Jonas Wittbrodt, JHEP 06 (2021) 183

• Alignment limit: $sin(\beta - \alpha) \rightarrow 1$ implies that the couplings of h is like SM Higgs boson.

H^{\pm} production and decay channels

- The QCD induced production of charged Higgs depends on its mass with respect to top quark and can be divided into
 - (A) Light Scenario: $m_{H^\pm} \lesssim 160~{\rm GeV}$
 - (B) Heavy Scenario: ($m_{H^\pm} \gtrsim 200~{\rm GeV}$)
 - (C) Intermediate Scenario: $(m_{H^\pm} \sim m_t)$
- In Type I 2HDM, the strong production of charged Higgs is $\tan \beta$ suppressed.

Conventional decay channels:

(A)
$$H^+ \rightarrow \tau^+ \nu$$

(B)
$$H^+ \rightarrow t\bar{b}$$

(C)
$$H^+ \rightarrow c\bar{s}$$

(D)
$$H^+ \rightarrow c\bar{b}$$

Exotic decay channels:

(A)
$$H^{\pm} \rightarrow hW^{\pm}$$
 : $\frac{\mp ig}{2}\cos(\beta - \alpha)(p_{\mu} - p_{\mu}^{\mp})$

(B)
$$H^{\pm} \rightarrow HW^{\pm}: \frac{\mp ig}{2} \sin(\beta - \alpha)(p_{\mu} - p_{\mu}^{\mp})$$

(C)
$$H^\pm o AW^\pm : rac{g}{2}(p_\mu - p_\mu^\mp)$$

CMS 8 TeV and 13 TeV results: ($\tau \nu$ and tb channels)

JHEP11(2015) 018,[1508.07774]

JHEP 07 (2019) 142,[1903.04560]

CMS PAS HIG-18-004

Constraints on charged Higgs parameter space

P.Sanyal, Eur.Phys.J.C 79 (2019) 11, 913

Exclusions:

- (A) Green Region --- 8 TeV CMS results
- (B) Red Region → 13 TeV CMS results
- (C) Dashed Line $\longrightarrow \mathcal{BR}(B \to X_s \gamma)$

Charged Higgs exotic decay channel ($H^{\pm} \rightarrow W^{\pm} A$)

- Minimal mass splitting together with alignment limit restricts the exotic decay channels H[±] → h/H/AW[±].
- But once open, H[±] can dominantly decay to these channels.
- CMS collaboration put upper bounds on $\mathcal{BR}(t \to H^+ b)$ at 95% CL assuming $\mathcal{BR}(H^+ \to W^+ A) \to 1$ and $\mathcal{BR}(A \to \mu^+ \mu^-) \to 3 \times 10^{-4}$.
- Mass difference $m_{H^\pm}-m_A=85$ GeV with $m_{H^\pm}\in[100-160]$ GeV is considered by CMS group.
- T parameter is satisfied by choosing $m_{H^\pm} \sim m_H$.
- In Type I scenario, $\mathcal{BR}(H^{\pm} \to W^{\pm}A) \to 1$ for $\tan \beta \gtrsim 1$ and $\mathcal{BR}(A \to \mu^{+}\mu^{-}) \sim 2.6 \times 10^{-4}$ for $m_{A} \in [15-75]$ GeV.

P.Sanyal, Eur.Phys.J.C 79 (2019) 11, 913

Same sign trilepton search at the LHC in Type I 2HDM

• For large $\tan \beta$ the cross section $pp \to W^{*\pm} \to H^{\pm} \phi$ dominates over the $pp \rightarrow H^{\pm}tb$ channel in Type I 2HDM.

- For close to the alignment limit $\phi \neq h_{SM}$.
- Signal:
 - (A) $pp \to W^{*\pm} \to H^{\pm}H \to (W^{\pm}H)(W^{+}W^{-}) \to (W^{\pm}W^{+}W^{-})(W^{+}W^{-}) \to 3\ell^{\pm}\cancel{E}_{T} + X$ (B) $pp \to W^{*\pm} \to H^{\pm}A \to (W^{\pm}H)(ZH) \to (W^{\pm}W^{+}W^{-})(ZW^{+}W^{-}) \to 3\ell^{\pm}\cancel{E}_{T} + X$
- SM backgrounds: WZ+ jets, $Z\ell^+\ell^-+$ jets and $t\bar{t}W+$ jets.
- Parameter Choice: $m_{H^{\pm}} m_H = 85$, 120 GeV, $m_H \in [130 300] \text{GeV}$, $m_{H^{\pm}} \approx m_A$, $\tan \beta \in [1, 50]$, $\sin(\beta - \alpha) = 0.995$ and $m_{12}^2 \in [0, m_H^2 \sin \beta \cos \beta]$.

Current Limits in Type I 2HDM

T. Mondal and P. Sanyal, arXiv:2109.05682

- Red Region: Exclusion regions from the LHC \sqrt{s} =7, 8, 13 TeV constraints on neutral Higgses and charged Higgs.
- Channels:

(1)
$$H/A \rightarrow \tau \tau$$

(2) $H/A \rightarrow \gamma \gamma$

(3) $H \rightarrow VV (V = W^{\pm}, Z)$

(4)
$$A \rightarrow HZ$$

(5)
$$A \rightarrow hZ$$

(6)
$$H^{\pm} \rightarrow tb$$

Blue Region: Exclusion region coming from the $\mathcal{BR}(B \to X_s \gamma)$ constraint.

Bosonic decay modes of Higgs bosons

T. Mondal and P. Sanyal, arXiv:2109.05682

(A)
$$\mathcal{BR}(H \to W^+W^-)$$

(B)
$$\mathcal{BR}(H^{\pm} \rightarrow W^{\pm}H)$$

(C)
$$\mathcal{BR}(A \rightarrow ZH)$$

$$HW^+W^-:\cos(eta-lpha)g_{hVV}^{SM}$$

$$H^{\pm}HW^{\mp}_{\mu}$$
: $\pm irac{g}{2}\sin(eta-lpha)(p_{\mu}+p'_{\mu})$

$$AHZ:-rac{g}{2c_W}\sin(eta-lpha)(p_\mu+p'_\mu)$$

Collider Analysis

Selection cuts:

- (1) SS3L: Three isolated leading leptons (e, μ) with same sign.
- (2) Momentum p_T cuts: $p_T(\ell_1) > 30$ GeV, $p_T(\ell_2) > 30$ GeV, $p_T(\ell_3) > 20$ respectively and $\not\not\!E_T > 30$ GeV.
- (3) Lepton and jet separation cuts: Lepton-lepton separation, $\Delta R_{\ell\ell} > 0.4$ and lepton-jet separation cuts, $\Delta R_{\ell j} > 0.4$ where $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.
- (4) Z-veto: Veto events with additional leptons oppositely charged to the tagged SS3L with same flavor satisfying the condition $80 < m_{\ell^+\ell^-} < 100$ GeV.
- (5) b-veto: Veto events if there are any tagged b-jets.

Background cross sections at $\sqrt{s}=$ 13 TeV								
Selection cuts	WZ+ jets [fb]	$Z\ell^+\ell^-+$ jets [fb]	$t\bar{t}W$ + jets [fb]					
MG5	1360.80	246.550	62.570					
SS3L	0.0543	0.00991	0.0878					
Lepton $p_T \& \mathcal{E}_T$	0.0122	0.00122	0.0118					
$\Delta R_{\ell\ell} \& \Delta R_{\ell j}$	0.0073	0.00083	0.0103					
Z-veto	0.0065	0.00065	0.0103					
<i>b</i> -veto	0.0061	0.00061	0.0018					

Results

T. Mondal and P. Sanyal, arXiv:2109.05682

Conclusions

- Large $\tan \beta$ regions in Type I 2HDM are allowed due to the fermiophobic nature of BSM Higgses.
- Two most conventional decay modes $H^\pm \to au^\pm
 u$ and $H^+ \to t \bar b$ are studied using the CMS 13 TeV results and compared with 8 TeV results.
- CMS collaboration for the first time studied the exotic channel, $H^{\pm} \to W^{\pm}A$, $A \to \mu^{+}\mu^{-}$ to put upper limits on $\mathcal{BR}(t \to H^{\pm}b)$.
- The EW production of charged Higgs dominates over the strong production in Type I scenario for large tan β.
- Mass splitting of H[±] and H along with the fermiophobic limit of H in Type I scenario are used to study the same sign trilepton final state at the LHC.
- The exclusion and discovery limits are discussed for $300 {\rm fb^{-1}}$ and $3000 {\rm fb^{-1}}$ luminosities at $\sqrt{s} = 13 {\rm TeV}$.

Conclusions

- • Large $\tan \beta$ regions in Type I 2HDM are allowed due to the fermiophobic nature of BSM Higgses.
- Two most conventional decay modes $H^\pm \to \tau^\pm \nu$ and $H^+ \to t \bar b$ are studied using the CMS 13 TeV results and compared with 8 TeV results.
- CMS collaboration for the first time studied the exotic channel, $H^{\pm} \to W^{\pm} A$, $A \to \mu^+ \mu^-$ to put upper limits on $\mathcal{BR}(t \to H^{\pm} b)$.
- The EW production of charged Higgs dominates over the strong production in Type I scenario for large tan β.
- Mass splitting of H[±] and H along with the fermiophobic limit of H in Type I scenario are used to study the same sign trilepton final state at the LHC.
- The exclusion and discovery limits are discussed for $300 {\rm fb^{-1}}$ and $3000 {\rm fb^{-1}}$ luminosities at $\sqrt{s}=13 {\rm TeV}$.

Thank You