Workshop on crystal collimation

Fabrication of crystals for channeling at INFN Ferrara

Andrea Mazzolari

University of Ferrara and INFN - Italy

Outlook

- Crystal fabrication and characterization I (anisotropic wet etching)
- Crystal fabrication and characterization II (isotropic wet etching)
- Old and new holders design
- Crystal bending and torsion adjustment
- On-beam characterization
- Conclusions

Anistropic etching is a feasible way to realize sub-surface damage free crystals entirely by wet chemical methods

Etch rate on different silicon planes for KOH 20% at 40 °C

(100)	(110)	(111)
7.1 μm/h	10.7 μm/h	Negligible

Crystal fabrication I

- a) Starting material: (110) silicon wafer,
 Low miscut (certified < 300 μrad),
 Double side polished surfaces
 TTV < 1 μm
 Flatness < 300 nm over 26x9 mm²
- b) LPCVD deposition of silicon nitride thin layer
- c) Silicon nitride patterning
- d) Etching of Si in TMAH solution, silicon nitride acts as masking layer
- e) Silicon strips release
- f) Removal of silicon nitride

Crystal fabrication I

Fabrication of a batch of strips is possible through wet chemical methods

<110>

<111>

V. Guidi et al. *JPD 41, 24 (2008)*

Crystal characterization I

Sub-nm roughness

was achieved

High-quality surfaces achieved via ACE

Entry surface (HRTEM)

Crystal fabrication II

Starting material

- 4" silicon wafers
- Low miscut (certified < 300 µrad)
- Double side polished surfaces
- TTV < 1 µm
- Flatness < 300 nm over 26x9 mm²

Crystal fabrication II

Starting silicon strip

Lattice damage is removed thorugh isotropic wet etch

Cr/Au mask is removed through wet etch

Surface parallel to the beam is not affected by etchant, so it mantains low rougness and high flatness

Crystal characterization II

In channeling condition only the non-channeled particles undergo backscattering (LNL-INFN)

Channeling inefficiency can be measured

Treated sample	Reference
21.5±0.8%	22.7±0.9%

/ごんなおびがり

- HRXRD comparison between treated sample and a reference (Padova Physics department)
- HRXRD and RBS-c shows that crystals are lattice damage free

Miscut characterization

Maximum signal when the surface is parallel to the beam

Old holders design

Torsion arises as a consequence of mechanical imperfections in the bending device

Torsion adjustment

- Based on controlled deformation of holder surfaces
- Raw possibilities for torsion adjustment

Crystal bending

 Adjusted acting on a thread bar fixed by nuts

New holders design

FEM assisted holder design

- 90° joint replaced with a rounded joint
- Better deformation control

Torsion adjustment

- Spring demultiplicate the action of the force imparted by the screw
- Higher resolution in torsion adjustment

Crystal bending

- Determined by surfaces inclination
- Removed screws →increased stability

Torsion adjustment

Torsion adjustment

- ↑ 1 screw turn → 1.4 µrad/mm torsion adjustment!!
- High linearity
- Reproducibility< 0.2 µrad/mm

Crystal bending

A primary curvature is imparted by mechanical external forces, which result in a secondary (anticlastic) curvature.

White light interferometry

- Vertical resolution < 0.8 nm
- Lateral resolution ~ 2 µm

Precise measurement of

- Bending angle: 152 µrad
- Torsion < 5 rad
- Crystal thickness: 1.93 mm

ST-45-A

- Off-axis: 70 µrad
- Thickness: 2mm
- Bending angle: 150 µrad
- Torsion < 1 µrad/mm
- Agreement with interferometric characterization
- crystal ready for SPS

ST45A (SPS)

- Channeling planes (110)
- Miscut 70 µrad
- Channeling axis <111>
- Thickness along the beam 2 mm
- Transversal thickness 0.5 mm
- Bending angle 150 µrad
- Torsion 0.7 µrad/mm

ST38A (SPS)

- Channeling planes (110)
- Miscut 100 µrad
- Channeling axis <111>
- Thickness along the beam 2 mm
- Transversal thickness 1 mm
- Bending angle ~ 200 µrad
- Torsion data analysis to be performed

Crystal for LHC

ST40A (prototype for the LHC)

- Channeling planes (110)
- Miscut 220 µrad
- Channeling axis <110>
- Thickness along the beam 5 mm
- Transversal thickness 2 mm
- Bending angle ~ 60 µrad
- Torsion data analysis to be performed

Proposals for LHC and SPS

LHC (under construction)

- Realization of a strip crystal with the following features
 - Channeling planes (110)
 - Miscut: as low as possible
 - Torsion < 1 µrad/mm

SPS (under construction)

- Realization of a strip crystal with the following features
 - Channeling planes (110)
 - Miscut: as low as possible
 - Torsion < 1 µrad/mm

Conclusions

- Fully estabilished two metodologies to prepare crystals free of lattice damage
- Established protocols to characterize crystals quality (miscut and crystalline quality)
- Improved holders easily allows torsion adjustment to less than 1 µrad/mm
- On beam characterization highlights agreement with previously made characterizations