### Crystal Collimation Workshop, CERN, 25-27 October 2010

**SPS** session

#### **Cherenkov detectors in UA9**

Yu.M.Ivanov
Petersburg Nuclear Physics Institute

#### **Milestones**

- February 2009 proposed to install Cherenkovs in SPS
- March 2009 fabricated, tested and the first installed in Absorber
- April 2009 first signals observed during SPS operation
- May 2009 the second Cherenkov installed in CERN tank
- June 2009 first data from Cherenkovs
- August 2009 signals synchronized with SPS cycle
- September 2009 calibrations on H8
- November 2009 amplitudes recorded during MD on 4<sup>th</sup> Nov
- January 2010 the third Cherenkov installed in Dispersive area
- July, Sept, Oct 2010 UA9 runs in SPS

#### Quartz, Lihgt channel, PMT



## Spectrum from Cherenkov radiator when quartz close to PMT through silicon paste



Mean number of electrons per incident proton ~ 40

One electron amplitude ~ 10 mV

Cherenkov efficiency = 100%

## Spectrum from Cherenkov radiator when quartz and PMT on a distance 12 cm



Mean number of electrons per incident proton ~ 0.5

One electron amplitude ~ 10 mV

**Cherenkov efficiency** = 40%

#### Layout of Cherenkov detectors in UA9



**Cherenkov in Dispersive Area (TAL2)** 

#### **Cherenkov in CERN tank**







#### **Cherenkov in Absorber (TACW)**







#### **Cherenkov in Dispersive area (TAL2)**









# First Cerenkov (TEC) in OUT position as compared with one of the Scintillators (TEC3) during long angular scan with Crystal 1



## Cherenkov in Absorber (TACW) (UA9 at SPS, 22.10.10)

**Scintillator L** 



**Cherenkov in TACW** 



#### **Cherenkov in Dispersive area (TAL2)**



#### **Conclusions**

- Cherenkovs provide qualitative information compatible with other detectors
- The reason why we can not count halo protons is the one bunch mode when from 10 to 1000 protons cross the Cherenkov within 25 ns
- Calibration procedure of Cherenkov in SPS ring is needed
- Possible improvements of Cherenkovs:
- Light collection can be improved up to 10 times through design optimization
- •Thickness of quartz can be decreased from 10 mm to 2-3 mm keeping one proton efficiency more than 95%