SPS collimation simulation \rightarrow requirements for crystals

Limitation on the crystal imperfections

1. Amorphous layer

Mechanically disrupted layer can be avoided
Thickness of native Si oxide layer due to contact with air is about 2 nm
Native layer can be also chemically removed before the installation
2. Crystal miscut

Angle between the crystal planes and surface
3. Anticlastic bending

It is parasitic one for QM crystal
4. Crystal torsion

Orientation of crystal planes is changed along vertical direction

Simulation scenario

For particle tracking $\quad \rightarrow \quad$ (1) liner approach was used for SPS
(2) the only aperture restrictions are in the crystal collimation area

We transport particles along SPS through two azimuths $B C \rightarrow T A L \rightarrow B C$ using two transfer matrices $M(6,6)$

Start point \rightarrow BC azimuth
Final points \rightarrow (1) absorption in TAL
(2) Inelastic interaction in BC

Collimation efficiency losses only due to inelastic nuclear interactions

Initial distribution of halo particles

Normalized betatron amplitude at $B C \rightarrow x_{m}=x_{b c}+\Delta x_{m}$
Amplitude increase Δx_{m} is a random value

$$
P\left(\Delta x_{m}\right)=\exp \left(-\Delta x_{m} / \lambda\right), \quad \lambda=0.1 \mu m, \quad \Delta x_{m}=-\lambda \cdot \ln \left(\xi_{1}\right)
$$

Interval betatron phases of particles hit BC

$$
\Delta \varphi=\arccos \left(1 /\left(1+\Delta x_{m} / x_{b c}\right)\right)
$$

Random phase from this interval

$$
\Phi\left(\xi_{2}\right)=2 \cdot \Delta \varphi\left(\xi_{2}-0.5\right)
$$

Horizontal coordinates

$$
\begin{gathered}
x\left(\xi_{1}, \xi_{2}\right)=x_{m}\left(\xi_{1}\right) \cdot \cos \left(\varphi\left(\xi_{2}\right)\right) \\
x^{\prime}\left(\xi_{1}, \xi_{2}\right)=-x_{m}\left(\xi_{1}\right) / \beta_{x}\left(\sin \left(\varphi\left(\xi_{2}\right)+\alpha \cdot \cos \left(\varphi\left(\xi_{2}\right)\right)\right)\right.
\end{gathered}
$$

Distributions of vertical coordinates ($\mathrm{y}, \mathrm{y}^{\prime}$) and momentum deviation $\delta=\Delta \mathrm{p} / \mathrm{p}_{\mathrm{o}}$

$$
P(y)=P\left(y^{\prime}\right)=P(\delta)=\delta(0)
$$

Results for Strip Crystal 1 in 2009
 분ํ․

Straight comparison can be made only for the angular dependence of beam losses in crystal

Alignment positions BC and TAL are about $4 \sigma_{x}$

Collimation positions
$\mathrm{BC} \rightarrow-0.5 \mathrm{~mm}, \mathrm{TAL} \rightarrow+1.5 \mathrm{~mm}$

Loss reduction in channeling
experiment $\rightarrow 5$, simulation $\rightarrow 36$

Discrepancy reason \rightarrow Strip crystal has a large torsion + goniometer inaccuracy

Results for Strip Crystal 1 in 2009

Different shift, width and efficiency of deflected beam were caused by different orientations of the crystal

Distribution on TAL

Number of passages

Impact parameter with BC

Torsion values $\rightarrow 20 \mu \mathrm{rad} / \mathrm{mm}$ (1) and $40 \mu \mathrm{rad} / \mathrm{mm}$ (2) Critical angle $\rightarrow \theta_{\mathrm{c}}=19.5 \mu \mathrm{rad}$

Particle losses at $\theta_{0}=0$ are increased by 2.7 for torsion 1 and by 6.6 for torsion2

Torsion for Strip Crystal 1 can be about $20 \mu \mathrm{rad} / \mathrm{mm}+$ goniometer inaccuracy \rightarrow larger than $20 \mu \mathrm{rad}$
(1) Native amorphous layer thickness $-2 \mathrm{~nm}, \lambda=0.5 \mathrm{~nm}$
(2) Amorphous layer thickness $-1 \mu \mathrm{~m}, \lambda=0.1 \mu \mathrm{~m}$

Loss increase at $\theta_{0}=10 \mu \mathrm{rad}$

$$
\text { (1) } 41 \% \text {, (2) } 158 \%
$$

Loss increase at $\theta_{0}=0$
(1) 16%, (2) 300%

Loss increase at $\theta_{0}=-10 \mu \mathrm{rad}$
(1) 1.8%, (2) 150%

First passage is unsuccessful
Difference in the crystal length passed in the cases (1) and (2)
Loss value for the ideal crystal at $\theta_{0}=0 \rightarrow 2.8 \%$ of amorphous 0.16% of all beam halo

Data of the run in September 1-2

Distances from the orbit for BC and TAL were about two times larger

Offset between BC and TAL was about 1.55 mm

Loss reduction in channeling experiment $\rightarrow 16-20$, simulation $\rightarrow 33$

Discrepancy at $\theta_{0}=0$ was decreased
New IHEP goniometer has smaller inaccuracy $\rightarrow 10 \mu \mathrm{rad}$ + good QM crystal

However, discrepancy with experiment is observed in VR area

Anticlastic curvature $\rightarrow 25.6 \mu \mathrm{rad} / \mathrm{mm}$ (1) and $43 \mu \mathrm{rad} / \mathrm{mm}$ (2)
Critical angle $\rightarrow \theta_{\mathrm{c}}=19.5 \mu \mathrm{rad}$
(1) is corresponded to the change rate of the beam envelop direction $\rightarrow-\alpha / \beta$

Anticlastic reduces the losses for negative angles and increases for positive ones near $\theta_{0}=0 \quad 10 \mu$ rad the losses are about the same

$$
\text { Loss increase at } \theta_{0}=0 \rightarrow(1)-14 \% \text {, (2) }-17 \%
$$

Miscut angle for QM crystal $3 \rightarrow \theta_{\mathrm{m}}=92 \mu \mathrm{rad}$

Loss value for the ideal crystal at $\theta_{0}=0 \rightarrow 3 \%$ of amorphous 0.3% of all beam halo

