Limitation on the crystal imperfections

1. Amorphous layer

Mechanically disrupted layer can be avoided Thickness of native Si oxide layer due to contact with air is about 2 nm Native layer can be also chemically removed before the installation

2. Crystal miscut

Angle between the crystal planes and surface

3. Anticlastic bending

It is parasitic one for QM crystal

4. Crystal torsion

Orientation of crystal planes is changed along vertical direction

For particle tracking \rightarrow (1) liner approach was used for SPS (2) the only aperture restrictions are in the crystal collimation area

We transport particles along SPS through two azimuths $BC \rightarrow TAL \rightarrow BC$ using two transfer matrices M(6,6)

Start point \rightarrow BC azimuth Final points \rightarrow (1) absorption in TAL (2) Inelastic interaction in BC

Collimation efficiency losses only due to inelastic nuclear interactions

Initial distribution of halo particles

Normalized betatron amplitude at BC \rightarrow x_m=x_{bc}+ Δ x_m

Amplitude increase Δx_m is a random value P(Δx_m)=exp(- $\Delta x_m/\lambda$), λ =0.1 µm, Δx_m =- λ ·ln(ξ_1)

Interval betatron phases of particles hit BC $\Delta \phi$ =arccos(1/(1+ $\Delta x_m/x_{bc}$))

> Random phase from this interval $\Phi(\xi_2)=2\cdot\Delta\phi(\xi_2-0.5)$

Horizontal coordinates

 $\begin{aligned} x(\xi_1,\xi_2) = x_m(\xi_1) \cdot \cos(\varphi(\xi_2)) \\ x'(\xi_1,\xi_2) = -x_m(\xi_1)/\beta_x \left(\sin(\varphi(\xi_2) + \alpha \cdot \cos(\varphi(\xi_2)))\right) \end{aligned}$

Distributions of vertical coordinates (y, y') and momentum deviation $\delta = \Delta p/p_o$ P(y)=P(y')=P(\delta)= $\delta(0)$ Straight comparison can be made only for the angular dependence of beam losses in crystal

Alignment positions BC and TAL are about $4\sigma_{x}$

Collimation positions BC \rightarrow - 0.5 mm, TAL \rightarrow +1.5 mm

Loss reduction in channeling experiment \rightarrow 5, simulation \rightarrow 36

Discrepancy reason → Strip crystal has a large torsion + goniometer inaccuracy

Results for Strip Crystal 1 in 2009

Different shift, width and efficiency of deflected beam were caused by different orientations of the crystal

Simulation for Strip Crystal 1 with torsion

Torsion values \rightarrow 20 µrad/mm (1) and 40 µrad/mm (2) Critical angle $\rightarrow \theta_c=19.5$ µrad

Particle losses at $\theta_0=0$ are increased by 2.7 for torsion 1 and by 6.6 for torsion2

Torsion for Strip Crystal 1 can be about 20 μ rad/mm + goniometer inaccuracy \rightarrow larger than 20 μ rad

Simulation for Strip Crystal 1 with amorphous layer

(1) Native amorphous layer thickness -2 nm, λ =0.5 nm (2) Amorphous layer thickness $-1 \mu m$, λ =0.1 μm

Loss increase at θ_0 =10 µrad (1) 41% , (2) 158%

Loss increase at $\theta_0=0$ (1) 16% , (2) 300%

Loss increase at θ_o =-10 µrad (1) 1.8% , (2) 150%

First passage is unsuccessful Difference in the crystal length passed in the cases (1) and (2)

Loss value for the ideal crystal at $\theta_0=0 \rightarrow 2.8\%$ of amorphous 0.16% of all beam halo

Results for QM Crystal 3 in 2010

Data of the run in September 1-2

Distances from the orbit for BC and TAL were about two times larger

Offset between BC and TAL was about 1.55 mm

Loss reduction in channeling experiment \rightarrow 16-20, simulation \rightarrow 33

Discrepancy at θ_o =0 was decreased New IHEP goniometer has smaller inaccuracy \rightarrow 10 µrad + good QM crystal

However, discrepancy with experiment is observed in VR area

Simulation for QM Crystal 3 with anticlastic bending

Anticlastic curvature \rightarrow 25.6 µrad/mm (1) and 43 µrad/mm (2) Critical angle $\rightarrow \theta_c=19.5$ µrad

(1) is corresponded to the change rate of the beam envelop direction $\rightarrow -\alpha/\beta$

Anticlastic reduces the losses for negative angles and increases for positive ones near $\theta_0=0$ 10 µrad the losses are about the same

Loss increase at $\theta_0 = 0 \rightarrow (1) - 14\%$, (2) -17%

Simulation for QM Crystal 3 with miscut

Miscut angle for QM crystal $3 \rightarrow \theta_m = 92 \mu rad$

Loss value for the ideal crystal at θ_o =0 \rightarrow 3% of amorphous 0.3% of all beam halo