Data reduction and analysis of SPS data

DANIELE MIRARCHI CERN

FOR UA9 COLLABORATION

OUTLINE

I. Synchronization II. Alignment procedures III. Qualitative analysis of dispersive area scans IV. Conclusions

OUTLINE

I. Synchronization II. Alignment procedures III. Qualitative analysis of dispersive area scans IV. Conclusions

SYNCHRONIZATION

Problems:

- All the UA9's devices are logged in different ways:
$>$ Different acquisition time.
- Logging of machine parameter completely uncorrelated from all other acquisitions.

Solution:
\checkmark Take all the different files and make like a "tetris":
I. Choose the time range in which all the files have data.
II. Synchronization of the all data by Unix Timestamp.

SYNCHRONIZATION

What the synchronization program does:
\checkmark Starts from the higher initial Timestamp.
\checkmark Writes every parameter in a ROOT file every second.
\checkmark When data are not present, they are replaced with the previous acquisition.
\checkmark Stops at the lower final Timestamp.

After that we have a synchronized ROOT file containing:

File 1
12:40:00
12:40:01

12:40:03

File 2

12:40:01
12:40:02
12:40:03

ROOT file
12:40:01 12:40:01 12:40:01
12:40:02 12:40:01 12:40:02
12:40:03 12:40:03 12:40:03
$>$ Acquisition time.
$>$ Acquisitions of all the detectors (Scintillators, GEM, BLM,...)
$>$ Positions of all mobile devices (Crystal, Collimator, Absorber,...)
$>$ All the SPS parameters (Beam Intesity, Tune, Orbit,...)

We have the complete knowledge of what happened in SPS and in UA9 apparatus: we can make all the correlation plots that we need!

OUTLINE

I. Synchronization

II. Alignment procedures

 III. Qualitative analysis of dispersive area scans IV. Conclusions
What we have:
 Position measured from garage position
 What we want:
 Relative position from the beam

ALIGNMENT

Two different procedures depending on the presence or not of the LHC-Collimator. Without LHC-Collimator:

ALIGNMENT

Two different procedures due to the presence or not of the LHC-Collimator.
With LHC-Collimator:

Basic configuration after the alignment:
$>$ Insert crystal 0.5 mm inside respect the alignment position.
$>$ Retract absorber of channeled beam of 1.5 mm respect the alignment position.

ALIGNMENT

Example of crystal alignment with LHC-Collimator:

OUTLINE

I. Synchronization II. Alignment procedures III. Qualitative analysis of dispersive area scans IV. Conclusions

What is the effect of the collimation process, on the shape of beam?

Beam tails scan

DISPERSIVE AREA SCANS

Dechanneld/scattered protons

Hadronic shower from the crystal

Scattered protons
Hadronic shower from the tungsten

DISPERSIVE AREA SCANS

DISPERSIVE AREA SCANS

DISPERSIVE AREA SCANS

mean $=68.92 \mathrm{~mm}$ sigma $=0.13 \mathrm{~mm}$

DISPERSIVE AREA SCANS

DISPERSIVE AREA SCANS

OUTLINE

I. Synchronization II. Alignment procedures III. Qualitative analysis of dispersive area scans IV. Conclusions

CONCLUSIONS

\checkmark With this synchronization program, we have the complete picture of what happen during the run, second by second.
\checkmark The alignment procedure is crucial and challenging: we developed two methods (with or without LHC-Collimator) to align the devices with a good precision in every condition.
\checkmark First qualitative analysis of the dispersive area scans, shows that with crystal collimation we seems have a more clean and definite beam, with respect to amorphous collimation.

For the future:
$>$ Do an online synchronization during data taking.
$>$ Collect more dispersive area scans, also with a larger range.
$>$ Do a FLUKA simulation for dispersive area scans.

ALIGNMENT

Two different procedures due to the presence or not of the LHC-Collimator.
Without LHC-Collimator:

1. Close both sides (one at time) of the Roman Pot.]
2. Close the absorber of channeled beam.
3. Open both Roman Pot sides. Absorber stays in the same position.
4. Approach the beam with one mobile device.]
5. Retract the device.
6. Repeat points 4 \& 5 for each mobile device.

Same picture on Medipix

Same distance from closed orbit

See the shadow on Medipix

Cross the absorber shadow

Local losses increase

Basic configuration after the alignment:
$>$ Insert crystal 1 mm inside respect the alignment position.
$>$ Retract absorber of channeled beam of 2 mm respect the alignment position.

ALIGNMENT

With LHC-Collimator:

1. Close both jaws (one at time) until they touch the beam.]
2. LHC-Collimator stays closed.

Same losses
Same distance from closed orbit
3. Approach the beam with one mobile device.
4. Retract the device.
5. Repeat points 3 \& 4 for each mobile device.
6. Open completely both jaws of LHC-Collimator.

> Cross the LHC-Collimator shadow
> Local losses increase

For a better estimation of the alignment position during the offline analysis we need few little steps $(\sim 100 \mu \mathrm{~m})$ after touching the beam.

