Performance evaluation of a crystal-enhanced collimation system for the LHC

Valentina Previtali
R. Assman, C. Bracco, I. Yazynin, S. Redaelli, T. Weiler

outline

- LHC and its collimation system
- How a bent crystal works
- How could a crystal help the LHC?
* LHC crystal-enhanced collimation system: simulation results
- Conclusions, outlook

The Large Hadron Collider (LHC)

\because, \cdots

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

POWERFUL

The Large Hadron Collider (LHC)

POWERFUL

length: 27 Km

2 counter-rotating proton beams
Design energy:
each proton: 7 TeV total energy protons are grouped in bunches of 1.1510^{11} protons each beam has 2808 bunches

The Large Hadron Collider (LHC)

POWERFUL

length: 27 Km

2 counter-rotating proton beams
Design energy:
each proton: 7 TeV total energy
protons are grouped in bunches of 1.1510^{11} protons each beam has 2808 bunches
$\left(710^{12} \mathrm{eV}\right) \times\left(1.1510^{11}\right) \times 2808$

total stored energy 360 MJ per beam

The Large Hadron Collider (LHC)

POWERFUL

DELICATE

length: 27 Km

almost $2 / 3$ of the total length is filled with superconducting magnets, working temperature 1.9 K

1232 superconducting dipoles (bending)

460 superconducting quadrupoles (focusing)

The Large Hadron Collider (LHC)

POWERFUL

length: 27 Km

almost $2 / 3$ of the total length is filled with superconducting magnets, working temperature 1.9 K

1232 superconducting dipoles (bending)

460 superconducting quadrupoles (focusing)

the Large Hadron Collider and its

POWERFUL collimation System $\xrightarrow{\text { DELICATE }}$

total energy

360 MJ per beam
working temperature 1.9 K

the Large Hadron Collider and its

POWERFUL

working temperature

360 MJ per beam

Losses cannot be (totally) avoided
Design loss rate
(0.2 h beam lifetime, 10 s)

$4.310^{11} \mathrm{p} / \mathrm{s}$

=(480 KW per beam)

superconducting magnets are very sensible to energy releases

Quench limit
(energy release limit)
$7.810^{6} \mathrm{p} / \mathrm{s} / \mathrm{m}$

the Large Hadron Collider and its

POWERFUL

total energy

360 MJ per beam

working temperature

 1.9 KLosses cannot be (totally) avoided

Design loss rate
(0.2 h beam lifetime, 10 s)

$4.310^{11} \mathrm{p} / \mathrm{s}$

$=(480 \mathrm{KW}$ per beam $)$

superconducting magnets are very sensible to energy releases

Quench limit
(energy release limit)
$7.810^{6} \mathrm{p} / \mathrm{s} / \mathrm{m}$

Maximum
 local

cleaning $\quad \eta=\frac{N_{a b s}(d l)}{N_{\text {Tot }} \cdot d l}=1.7810^{-5}[1 / \mathrm{m}]$ inefficiency

The challenge

Maximum

local
cleaning $\quad \eta=\frac{N_{a b s}(d l)}{N_{\text {Tot }} \cdot d l}=1.7810^{-5}[1 / \mathrm{m}]$ inefficiency

- if a "cleaning efficiency" performance of $10^{-5} / \mathrm{m}$ cannot be achieved \rightarrow the circulating current must be proportionally scaled down (or the lifetime increased)
- but careful: the luminosity L of a machine is proportional to the total stored energy \rightarrow the collimation system limitations directly affect the machine performances! A performing collimation system is vital for the physics program of LHC.

The challenge

Maximum

local
cleaning $\quad \eta=\frac{N_{a b s}(d l)}{N_{\text {Tot }} \cdot d l}=1.7810^{-5}[1 / \mathrm{m}]$ inefficiency

* if a "cleaning efficiency" performance of $10^{-5} / \mathrm{m}$ cannot be achieved \rightarrow the circulating current must be proportionally scaled down (or the lifetime increased)
- but careful: the luminosity L of a machine is proportional to the total stored machin physics

A sophisticated collimation system is required for a safe operation of the LHC.

phase 1: the most sophisticated

collimation system ever

phased approach \rightarrow divide goals and difficulties of LHC in time. PHASE 1: Priority to robustness and flexibility (CFC).

108 collimators and absorbers!

but still limited!

basic limitation of the collimation system: losses receiving a small kick but a non negligible $\Delta p / p$ escape the collimation insertion but are immediately lost at the first bending magnets

but still limited!

basic limitation of the collimation system: losses receiving a small kick but a non negligible $\Delta p / p$ escape the collimation insertion but are immediately lost at the first bending magnets

but still limited!

basic limitation of the collimation system: losses receiving a small kick but a non negligible $\Delta p / p$ escape the collimation insertion but are immediately lost at the first bending magnets

the LHC collimation system: a phased approach

1. PHASE 1: Priority to robustness and flexibility (CFC).
simulations predict that the phase 1 system can reach $\sim 10 \%$ of the required cleaning efficiency!
2. PHASE 2 will allow to reach the nominal luminosity. Insertion of metallic collimators+ cryogenic collimators.

$$
\begin{aligned}
& \text { simulations predict } 100 \% \text { of } \\
& \text { the required performances }
\end{aligned}
$$

3. UPGRADE: in attempt to go beyond the nominal LHC parameters, there is room for advanced collimation solutions like crystals. aiming at a factor 10 improvement

How could a Crystal help?

Present layout of the LHC collimation system: multi-stage cleaning.
The primary collimators intercepts the primary beam halo - the halo is "sprayed" and intercepted downstream.

amorphous scatterer

the idea: extracting the halo

The idea: to use mechanically bent crystals (typically Si) as "smart scatterers" in replacement of primary amorphous collimators, to minimize the escaping particles. Primary collimator would be slightly retracted.

courtesy of W.Scandale

how does a crystal work?

it depends on the crystal-beam relative orientation!

Beam not aligned \rightarrow Amorphous behavior:

As the standard collimators
~ Gaussian distribution of angular kicks due to the overlap of different effects
(MCS, ionization, excitation, nuclear interactions...)

transerve

Channeling

- efficiency: 50%
- kick:100-500 urad
- acceptance: 2-20 urad (depends on energy)

if the particle transverse energy is lower than the maximum planar potential, the particle is trapped and follows the crystal planes
 for the bent crystal, the effective potential is slightly reduced by a centrifugal term, and so the channeling acceptance

Channeling mode

Channeling

- efficiency: 50%
- kick:100-500 urad
- acceptance: 2-20 urad (depends on energy)
transerve
Max. energy

тахітит angle w.r.t. $\quad \theta_{C 0}=\sqrt{\frac{2 U_{0}}{p v}}=2.9 \mathbf{1 0}^{-6} \mathbf{r a d}$
crystal planes about $210^{-6} \mathrm{rad}$ in case of "LHC" bent crystal Channeling mode

Channeling

- efficiency: 50%
- kick:100-500 urad
- acceptance: 2-20 urad
(depends on energy)
is the impacting halo divergence within the acceptance?
a natural spread in angular distribution for particle grazing the crystal surface exists!
\rightarrow extensive theoretical studies on the expected angular spread have been done
results for LHC: angular spread $0.25 \mu \mathrm{rad}$
channeling acceptance $\simeq 2 \mu \mathrm{rad}$ SAFE!

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 114001 (2009)

Grazing function g and collimation angular acceptance

Stephen G. Peggs*
Brookhaven National Laboratory, Upton, New York 11973, USA

Valentina Previtali

why a crystal? and not (for

example) a magnetic field?

- Tiny but powerful object
- Most common crystals are made of Si and their longitudinal length is between $1-5 \mathrm{~mm}$
* with the channeling effect, a crystal is capable of extracting multi Tev particles deviated of hundreds of urad in a very short length (mm)
* a crystal can select which particles to deviate!

- if inserted at the center of the beam can be used for extraction
- if touching only the halo particles \rightarrow use for collimation

why a crystal? and not (for

example) a magnetic field?

- Tiny but powerful object
- Most common crystals are made of Si and their longitudinal length is between $1-5 \mathrm{~mm}$
- with the channelingeffect a cevstal is canable of extr $\mathrm{B} \rho=3.335 \mathrm{p}[\mathrm{GeV} / \mathrm{c}]$, for hun $\quad \mathrm{R} \sim 50 \mathrm{~m} \rightarrow \mathrm{~B}=450 \mathrm{~T} \quad \mathrm{~mm})$
- a crystal can select which particles to deviate!

- if inserted at the center of the beam can be used for extraction
- if touching only the halo particles \rightarrow use for collimation

very difficult to achieve with a standard magnet!

LHC simulations:

Simulation inputs

Si crystal strip crystal, installed in an empty slot in the collimation insertion
$\square 7 \mathrm{TeV}$ standard collision optics

	β $[\mathrm{m}]$	α $[-]$	D $[\mathrm{~m}]$	1σ $[\mu \mathrm{~m}]$	$1 \sigma^{\prime}$ $[\mu \mathrm{rad}]$
x direction	137.62	1.94	0.59	262	3.7
y direction	90.65	-1.25	0.002	213	2.9

\square Curvature radius of 50 m , different lengths, bending angles between 10 and $200 \mu \mathrm{rad}$

DPerfect alignment and perfect crystal
DHorizontal and vertical case studied separately 8 million particles for 500 turns.

In the tracking software package, a detailed aperture model (both for SPS and LHC) is included. Local cleaning inefficiency evaluated for 27 Km , with a 10 cm bin.

Main outcome: Beam Loss Maps

 local collimation cleaning inefficiency $\eta_{\text {loc }}$ Vs longitudinal coordinate s
Simulation tools:

crystal code Sixtrack

The "state of the art" tracking code SixTrack (currently used at CERN for collimation studies) is a full 6D tracking code, which treats the interaction for amorphus collimators.

For the first time, a Montecarlo routine describing the crystal was coupled to a massive parallel simulation code for fine evaluation of far away losses

区 code adapted (variables, change of coordinates, output..)

V implementation of edge effects in the code (amorphous layer and miscut angle) particularly important in a circular machine

LHC loss maps - horizontal case

loss maps in IR7 and immediately downstream

LHC loss maps - horizontal case

loss maps in IR7 and immediately downstream

LHC loss maps - horizontal case

loss maps in IR7 and immediately downstream

we want to minimize cold (cryogenic) losses study different crystal kicks θ_{b}

LHC loss maps - horizontal case

loss maps in IR7 and immediately downstream

LHC loss maps - horizontal case

$\theta_{b}=10 \mu \mathrm{rad}$

LHC loss maps - horizontal case

$\theta_{b}=20 \mu \mathrm{rad}$

LHC loss maps - horizontal case

$\theta_{\mathrm{b}}=40 \mu \mathrm{rad}$

LHC loss maps - horizontal case

$\theta_{b}=50 \mu \mathrm{rad}$

LHC loss maps - horizontal case

LHC loss maps - horizontal case

$\theta_{b}=100 \mu \mathrm{rad}$

LHC loss maps - horizontal case

$\theta_{\mathrm{b}}=150 \mu \mathrm{rad}$

LHC loss maps - horizontal case

$\theta_{b}=200 \mu \mathrm{rad}$

LHC loss maps summary for the horizontal case

LHC loss maps -
 summary for the horizontal case

LHC loss maps -
 summary for the horizontal case

LHC loss maps -
 summary for the vertical case

LHC loss maps -
 summary for the vertical case

Conclusions

- The crystal collimation options has been considered for LHC, in case of stable physics beam at 7 TeV
- Dedicated tools have been developed:
- theoretical tools: the grazing function formalism showed that the particle expected angular spread should be within the crystal angular acceptance
- simulation tool: the state-of-the-art SixTrack code has been coupled with a MonteCarlo collimation code for the crystal. The routine has been further developed, inserting edge effects like amorphous layer and miscut angle
- The LHC crystal-enhanced collimation system has been simulated and optimized. A improvement factor 15 is predicted for optimal channeling angles \rightarrow simulation results that will constitute an important benchmark for future experimental results

Conclusions

- The crystal collimation options has been considered for LHC, in case of stable physics beam at 7 TeV
- Dedicated tools have been developed:
- theoretical tools: the grazing function formalism showed that the particle expected angular spread should be within the crystal angular acceptance
- simulation tool: the state-of-the-art SixTrack code has been coupled with a MonteCarlo collimation code for the crystal. The routine has been further developed, inserting edge effects like amorphous layer and miscut angle
- The LHC crystal-enhanced collimation system has been simulated and optimized. A improvement factor 15 is predicted for optimal channeling angles \rightarrow simulation results that will constitute an important benchmark for future experimental results

Conclusions

- The crystal collimation options has been considered for LHC, in case of stable physics beam at 7 TeV
- Dedicated tools have been developed:
- theoretical tools: the grazing function formalism showed that the particle expected angular spread should be within the crystal angular acceptance
- simulation tool: the state-of-the-art SixTrack code has been coupled with a MonteCarlo collimation code for the crystal. The routine has been further dovolonad incoutino monden predictions for SPS in 2009 (both for - Th channeling and collimation efficiency) were a factor 10 higher than measured! Priority is demonstrate that we can reach in experiment the performances predicted by simulations.
this work was possible thanks to the effort of many people. I especially would like to thank:
- my EPFL supervisor L. Rivkin - present and past people in the CERN collimation team R. Assman, C. Bracco, I. Yazynin, S. Redaelli, A. Rossi, T. Weiler
- the people in UA9 collaboration, in particular:
W. Scandale, E. Laface, S. Gilardoni, R. Losito, S. Peggs, A. Mazzolari, V.

Guidi, F. Cerutti

- colleagues in Fermilab
N. Mokhov, V. Shiltsev, D. Still, R. Carrigan, J. Annala

reserve slides

but still limited!

basic limitation of the collimation system: losses receiving a small kick but a non negligible $\Delta p / p$ escape the collimation insertion but are immediately lost at the first bending magnets

Beam Loss Maps

local collimation cleaning inefficiency $\eta_{\text {loc }}$ vs longitudinal coordinate s main simulation outcome!
a system of dedicated BLMs are positioned along the full SPS ring (one each quadrupole). The same is for LHC. Beam Loss Maps can be obtained and compared with the simulation results.

bent crystal

incoming beam

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

it depends on the crystal-beam relative orientation!

incoming beam

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

how does a crystal work?

Amorphous mode

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

horizontal deflection angle (mrad)
courtesy of W. Scandale

how does a crystal work?

 Amorphous mode
incoming beam

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

how does a crystal work? Channeling mode

Channeling

- efficiency: 50%
- kick:100-500 urad
- acceptance: 2-20 urad (depends on energy)
can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

horizontal deflection angle (mrad)
courtesy of W. Scandale

how does a crystal work?
 Channeling mode

incoming beam

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

horizontal deflection angle (mrad)
courtesy of W. Scandale

how does a crystal work?

 Volume Reflection mode
how does a crystal work? Volume Reflection mode

incoming beam

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

how does a crystal work?

Amorphous mode

can Beam All Beam Crystal (ST4_slices_sliced_17.050000_17.105000)

how does a crystal work?

Amorphous mode

Channeling mode

