Tenth International Fermi Symposium 9th-15th October 2022

DJ Maheso*

S Razzaque and FF Dirirsa

Short Gamma-Ray Bursts (SGRBs)

- The interval between the times when the burst reaches 5% and 95% of its maximum fluence is less than 2 seconds i.e T_{90} < 2s
- Originate from compact binary mergers like NS NS, NS blackhole
- They occur at cosmological distances
- Can help study the properties of NS mergers
- NS mergers are sources of GWs (i.e GRB170817/GW170817) and electromagnetic radiation

GRB090510

Magnetar Giant Flares (MGFs)

- Magnetars are highly magnetised NSs and they produce short energetic gamma-ray transients similar to SGRBs called Magnetar giant flares
- Originate from our galaxy and nearby galaxies and are not cosmological entities, hence fake SGRBs

• MGFs that are close to our galaxy show a single prominent peak, which can be mistaken as that of a SGRB

GRB200415A

SGRBs and MGFs

Objective

Problems

- 1. Both fake and real SGRBs show a single prominent when they are detected
- 2. The multi-peaked oscillating phase of MGFs cannot be detected for sources that are nearby hence these sources can be mistaken as SGRBs
- 3. Without the redshift, one cannot tell if the gamma-ray source is a MGF or SGRB

Solution

- 4. The objective is to create a method that can easily distinguish the two
- 5. This is achieved with pulse fitting using the Norris function
- 6. The MGF pulse rise time will be compared to that of SGRBs

SGRB Data (2008-2022) and Analysis

Fermi GBM HEASARC browse interface

367 SGRBs

20 of them had redshift, z

Only 10 had prominent peaks

Pulse fitting within the energy band 10 - 900 keV

Background selection and data refinement was achieved with the *RMFIT* package from the *Fermi* Science Center using tte data

The *gtburst* tool is used to select a detector whose incoming signal has incident angle < 50°

Source	Nal triggered detectors	Nal detector with highest rate counts
GRB090510	n0, n3, n6, n7 and n9	n6
GRB201221D	n7 and n8	n7
GRB200415A	n0, n1, n3, n5 and n9	n3

Pulse fitting - Norris function

$$I(t) = \begin{cases} A \exp\left[-\left(\frac{|t - t_{peak}|}{t_{rise}}\right)^{\nu_1}\right]; & t < t_{peak} \\ A \exp\left[-\left(\frac{|t - t_{peak}|}{t_{fall}}\right)^{\nu_2}\right]; & t > t_{peak} \end{cases}$$

GRB090510 (-0.096 - 0.064 s)

	Channel number					
Parameter	1 (10 - 25 keV)	2 (25 - 50 keV)	3 (50 - 100 keV)	4 (100 - 300 keV)	5 (> 300 keV)	All channels
						(10 - 900 keV)
A (counts/s)		629.19	881.73	1007.69		2771.1
ν_1, ν_2		1,1	2,1	1,1		1,1
Peak time (ms)		-32.00	-16.00	-16.00		-16.00
Rise time (ms)		24.06 ± 8.71	26.17 ± 4.83	46.79 ± 10.46		75.98 ± 11.21
Fall time (ms)		73.31 ± 19.94	33.44 ± 7.91	23.72 ± 6.45		55.96 ± 7.88
χ^2/dof		52.69/9	57.50/9	63.57/9		47.41/9

GRB201221D (-0.080 - 0.208 s)

	Channel number					
Parameter	1 (10 - 25 keV)	2 (25 - 50 keV)	3 (50 - 100 keV)	4 (100 - 300 keV)	5 (> 300 keV)	All channels
						(10 - 900 keV)
A (counts/s)	1518.99	1203.42	1643.98	1393.80		5068.36
ν_1, ν_2	1,1	1,1	1,1	2,1		2,1
Peak time (ms)	16.00	32.00	16.00	32.00		32.00
Rise time (ms)	46.45 ± 8.83	86.62 ± 15.63	16.11 ± 2.58	69.90 ± 8.86		86.15 ± 5.13
Fall time (ms)	106.14 ± 21.45	114.08 ± 16.41	98.13 ± 6.71	51.27 ± 10.35		95.87 ± 7.88
χ^2/dof	206.48/17	62.46/17	32.18/17	128.34/17		83.50/17

GRB200415A (-0.096 - 0.384 s)

	Channel number					
Parameter	1 (10 - 25 keV)	2 (25 - 50 keV)	3 (50 - 100 keV)	4 (100 - 300 keV)	5 (> 300 keV)	All channels
						(10 - 900 keV)
A (counts/s)		1290.29	2788.55	6549.85	2580.54	13618.50
$ u_1, \nu_2 $		1,1	1,1	2,1	2,1	1,1
Peak time (ms)		0.00	16.00	16.00	0.00	16.00
Rise time (ms)		37.09 ± 8.96	5.42 ± 3.44	9.73 ± 1.00	22.71 ± 2.52	7.31 ± 1.78
Fall time (ms)		87.77 ± 13.50	69.82 ± 6.59	61.28 ± 2.32	36.08 ± 4.39	75.38 ± 4.25
χ^2/dof		168.92/31	181.98/31	80.45/31	179.03/31	310.18/31

Conclusion

- For gamma-ray sources that have redshift, one can tell if we have a SGRB or a MGF.
- The Norris function gives the pulse rise time which is usually small for MGFs compared to SGRBs
- MGFs usually have fast rising pulse rising times
- Work in progress: Apply the proposed fitting method to a sample of gammaray bursts with unknown redshift and identify MGFs

Tenth International Fermi Symposium

Thank you for your attention!

DJ Maheso*